Анализ кристаллического расщепления мультиплетов иона Pr³⁺ в YPO₄ с учетом влияния межконфигурационного взаимодействия

© Л.А. Фомичева, Е.Б. Дунина, А.А. Корниенко

Витебский государственный технологический университет, 210035 Витебск, Беларусь e-mail: Fomicheva L A@mail.ru, L.Dun@mail.ru, A A Kornienko@mail.ru

(Поступило в Редакцию 9 марта 2011 г.)

Выполнен анализ кристаллического расщепления мультиплетов иона \Pr^{3+} в YPO_4 с учетом влияния возбужденных конфигураций противоположной четности $4f^{(N-1)}5d$ и конфигурации с переносом заряда. Такой подход позволяет улучшить описание штарковской структуры мультиплетов на 39% по сравнению с приближением слабого конфигурационного взаимодействия, а также дает возможность на основе экспериментальных данных по штарковской структуре определить параметры ковалентности и параметры кристаллического поля нечетной симметрии. Параметры ковалентности, определенные таким способом, по порядку величины совпадают с соответствующими параметрами, вычисленными для других лигандов с помощью микроскопических моделей.

Введение

01:05:07

Развитие теории кристаллического поля для *f*-элементов по-прежнему остается актуальной задачей теории оптических спектров, поскольку существующие теории часто не в состоянии обеспечить непротиворечивое описание экспериментальных результатов.

В ряде работ [1-6] показано, что существенное влияние на спектроскопические характеристики лантаноидов оказывают возбужденные конфигурации. Однако единого мнения о наиболее оптимальном гамильтониане кристаллического поля нет. Так, например, в работе [3] предлагается использовать гамильтониан спинкоррелированного кристаллического поля, а в работах [5,7] предлагают вести расчеты с учетом влияния возбужденной 4f6p-конфигурации. Существенным недостатком в упомянутых методах является то, что в них игнорируется вклад в кристаллическое расщепление мультиплетов от возбужденных конфигураций противоположной четности и от ковалентных эффектов, тогда как именно эти возбужденные конфигурации дают определяющий вклад в интенсивности межмультиплетных переходов.

Для улучшения описания штарковской структуры нами предлагается использовать модифицированную теорию кристаллического поля [8,9]. В этой теории учитывается влияние возбужденных конфигураций противоположной четности и эффектов ковалентности. Модифицированная теория уже была успешно применена для описания штарковских уровней иона U⁴⁺ в ZnSiO₄ [9], иона Pr^{3+} в GaN [10], Y₃Al₅O₁₂ [11], Cs₂NaPrCl₆ [8] и иона Tm³⁺ в Cs₂NaYCl₆ : Tm³⁺, Cs₂NaTmF₆ и Rb₂NaTmF [12]. Применение модифицированной теории позволяет на основе анализа экспериментальных данных по кристаллическому расщеплению мультиплетов получить информацию о параметрах кристаллического поля нечетной симметрии (ранее считалось, что эти параметры недоступны для экспериментального определения) и о параметрах ковалентности, которые обычно определялись только методами двойного электронно-ядерного резонанса.

В настоящей работе модифицированная теория кристаллического поля применена для описания штарковского расщепления мультиплетов иона Pr³⁺ в монокристалле YPO₄. Показано, что, учитывая влияние возбужденных конфигураций противоположной четности и эффектов ковалентности, можно и для этой системы получить описание экспериментальных результатов с удовлетворительной точностью.

Теоретические основы

Для описания штарковской структуры мультиплетов в приближении слабого конфигурационного взаимодействия обычно используют гамильтонинан [13]

$$H_{cf} = \sum_{k,q} B_q^k C_q^k.$$
(1)

Здесь B_q^k — параметры кристаллического поля, C_q^k — сферические тензоры, действующие на угловые переменные f-электронов.

Для учета влияния возбужденных конфигураций на штарковскую структуру кристаллических систем, активированных f-элементами, расчеты можно выполнять в приближении промежуточного и сильного конфигурационных взаимодействий [14]. Однако для некоторых оксидных систем, например [8–12], влияние возбужденных конфигарций настолько сильное, что для его учета необходимо использовать гамильтониан, полученный в приближении аномально сильного конфигурационного взаимодействия [8,9]

$$H_{cf} = \sum_{k,q} \left\{ B_q^k + \left(\frac{\Delta_d^2}{\Delta_d - E_J} + \frac{\Delta_d^2}{\Delta_d - E_{J'}} \right) \tilde{G}_q^k(d) + \sum_i \left(\frac{\Delta_{ci}^2}{\Delta_{ci} - E_J} + \frac{\Delta_{ci}^2}{\Delta_{ci} - E_{J'}} \right) \tilde{G}_q^k(c) \right\} C_q^k.$$
(2)

Здесь Δ_d и Δ_{ci} — энергии возбужденной конфигурации противоположной четности типа $4f^{N-1}5d$ и конфигурации с переносом заряда соответственно; $\tilde{G}_q^k(d)$, $\tilde{G}_q^k(c)$ — параметры, задающие величину вкладов соответствующих возбужденных конфигураций.

Величину вкладов возбужденной конфигурации противоположной четности $4f^{N-1}5d$ в \tilde{G}_q^k можно оценить по формуле [15]

$$\begin{split} \tilde{G}_{q}^{k}(d) &= -\frac{2k+1}{2\langle f \parallel C^{k} \parallel f \rangle} \sum_{p',p''} \sum_{t',t''} (-1)^{q} \begin{pmatrix} p' & p'' & k \\ t' & t'' & -q \end{pmatrix} \\ &\times \begin{cases} p' & p'' & k \\ f & f & d \end{cases} \langle f \parallel C^{p'} \parallel d \rangle \\ &\times \langle d \parallel C^{p''} \parallel f \rangle \frac{B_{t'}^{p'}(d)}{\Delta_{d}} \frac{B_{t''}^{p''}(d)}{\Delta_{d}}, \end{split}$$
(3)

где $\langle f \parallel C^k \parallel f \rangle$, $\langle f \parallel C^p \parallel d \rangle$ — приведенные матричные элементы сферических тензоров,

$$\begin{pmatrix} p' & p'' & k \\ t' & t'' & -q \end{pmatrix}, \quad \begin{cases} p' & p'' & k \\ f & f & d \end{cases}$$

3*j* и 6*j* — коэффициенты векторного сложения углового момента, $B_{t'}^{p'}(d)$, $B_{t''}^{p''}(d)$ — параметры кристаллического поля нечетной симметрии.

Величина вкладов в \tilde{G}_q^k от процессов с переносом заряда задается выражением [4]

$$\tilde{G}_q^k(c) = \sum_b \tilde{J}^k(b) C_q^{k^*}(\Theta_b, \Phi_b).$$
(4)

Здесь суммирование осуществляется по лигандам ближайшего окружения, Θ_b , Φ_b — сферические углы, фиксирующие направление на лиганд *b*.

Для расчета параметров $J^k(b)$ удобно использовать приближенные выражения [6]

$$\begin{split} \tilde{J}^2(b) &\approx \frac{5}{28} \left[2\gamma_{\sigma f}^2 + 3\gamma_{\pi f}^2 \right], \\ \tilde{J}^4(b) &\approx \frac{3}{14} \left[3\gamma_{\sigma f}^2 + \gamma_{\pi f}^2 \right], \\ \tilde{J}^6(b) &\approx \frac{13}{28} \left[2\gamma_{\sigma f}^2 - 3\gamma_{\pi f}^2 \right], \end{split}$$
(5)

где γ_{if} $(i = \sigma, \pi)$ — параметры ковалентности, соответствующие перескоку электрона из *i*-оболочки лиганда в *f*-оболочку лантаноида.

Результаты и их обсуждение

При нормальных условиях УРО4 имеет пространственную группу симметрии $D_{4h}^{19}(14_1/amd)$ $(a_0 = b_0 =$ = 6.882 Å, $c_0 = 6.018$ Å) [16]. Ион празеодима замещает ион иттрия, который в ближайшем окружении имеет восемь ионов кислорода — локальная симметрия D_{2d}. Для локальной симметрии D_{2d} при расчетах в приближении слабого конфигурационного взаимодействия гамильтониан (1) имеет пять параметров кристаллического поля B_0^2 , B_0^4 , B_4^4 , B_0^6 и B_4^6 . При расчетах в приближении аномально сильного конфигурационного взаимодействия (2) дополнительно появляются параметры нечетного кристаллического поля B_2^3 и B_2^5 , параметры Δ_{ci} , соответствующие энергии конфигурации с переносом заряда, параметр Δ_d , соответствующий конфигурации противоположной четности, а также параметры ковалентности $\gamma_{\sigma f}$ и $\gamma_{\pi f}$. Всего варьируется тринадцать параметров, в то время как для монокристалла УРО4 известны пятьдесят экспериментальных уровней из семидесяти [7].

Расчеты в приближении слабого, промежуточного и сильного конфигурационных взаимодействий не позволили получить хорошего согласия теории с экспериментом. Поэтому были выполнены расчеты в приближении аномально сильного конфигурационного взаимодействия (2). С помощью гамильтониана (2) удается уменьшить среднеквадратичное отклонение на 39% по сравнению с приближением слабого конфигурационного взаимодействия (табл. 1).

Значения параметров кристаллического поля четной симметрии, определенные из процедуры минимизации, в приближении слабого конфигурационного взаимодействия незначительно отличаются от соответствующих параметров, опреденных в приближении аномально сильного конфигурационного взаимодействия (табл. 2). Это говорит о том, что новые операторные формы гамильтониана (2) описывают эффекты, которые не представлены в гамильтониане (1).

Ранее было замечено, что значительное улучшение штарковской структуры некоторых мультиплетов достигается, если значения параметров Δ_{ci} выбираются близкими к энергиям тех мультиплетов, описание которых в приближении слабого конфигурационного взаимодействия не было удовлетворительным [10–12]. В данном случае плохое согласие теории с экспериментом наблюдается для мультиплетов ${}^{3}F_{4}$, ${}^{1}G_{4}$ и ${}^{2}D_{2}$ (табл. 1). В результате применения гамильтониана (2) были получены значения параметров Δ_{ci} (табл. 3), близкие к энергиям мультиплетов ${}^{3}F_{4}$, ${}^{1}G_{4}$ и ${}^{1}D_{2}$, что не противоречит ранее сделанным выводам [10–12].

Значение параметра Δ_d , соотетствующего конфигурации противоположной четности (табл. 3), получилось небольшим. Аналогичный результат получен для кристаллической системы ZrSiO₄ : U⁴⁺.

Важной особенностью предложенной теории является то, что при расчетах в качестве варьируемых параметров

Таблица 1. Сравнение экспериментальных [7] и вычисленных уровней энергии в приближении слабого (1) и аномально сильного (2) конфигурационных взаимодействий для кристаллической системы $YPO_4 : Pr^{3+}$. Все величины даны в сm⁻¹

SLJ	E _{expt} [7]	$E_{ m calc1}$ (1)	E_{calc2} (2)	$E_{\rm exp} - E_{\rm calc1}$	$E_{\rm expt} - E_{\rm calc2}$
$^{3}H_{4}$	0.0	-12.2	-63	12.2	63
	101.0	96.1	97.8	49	3.2
	139.0	126.3	140.0	127	-1.0
	150.0	162.2	156.3	-12.7	-6.3
	-	(289.5)	(305.1)	-	-
	_	(377.2)	(392.6)	_	_
	_	(4252)	(440.0)	_	_
$^{3}H_{5}$	2203.0	2206.2	2203.7	-32	-0.7
115	2203.0	2200.2	2203.7	-10.8	-2.4
	2256.0	2210.0	2210.1	_27.3	-11.6
	2280.0	2203.5	2207.0	-17.0	-14.6
		(2411.0)	(2413.4)	_	-
	2417.0	2431.7	2427.0	-14.7	-10.0
	2469.0	2465.8	2468.3	3.2	0.7
		(2550.7)	(2551.6)	_	_
$^{3}H_{6}$	4273.0	4274.0	4270.4	-1.0	2.6
	4309.0	4317.9	4313.3	-8.9	-4.3
		(4376.4)	(4356.3)	_	_
	4364.0	4403.9	4381.8	-39.9	-17.8
	4390.0	4412.1	4409.5	-22.1	-19.5
	4523.0	4553.4	4549.7	-30.4	-26.7
	4586.0	4591.6	4598.8	-5.6	-12.8
	_	(4623.3)	(4631.1)	_	_
	4729.0	4729.1	4740.5	-0.1	-11.5
	4761.0	4760.0	4763.6	1.0	-2.6
${}^{3}F_{2}$	5017.0	5044.5	5041.8	-27.5	-24.8
	5073.0	5075.8	5070.0	-2.8	3.0
	5096.0	5088.0	5083.3	8.0	12.7
	5141.0	5113.5	5116.2	27.5	24.8
${}^{3}F_{3}$	6349.0	6342.8	6339.4	6.2	9.6
	6387.0	6388.1	6384.2	-1.1	2.8
	6442.0	6436.2	6436.9	5.8	5.1
	6459.0	6445.3	6448.8	13.7	10.2
2	6503.0	6509.2	6512.6	-6.2	-9.6
${}^{J}F_{4}$	6779.0	6755.2	6778.8	23.8	0.2
	6828.0	6801.8	6822.8	26.2	5.2
	6864.0	6846.3	6867.9	17.7	-3.9
	6888.0	6881.2	6892.6	6.8	-4.6
	6942.0	6958./	6949./	-16./	-/./
	69/8.0 7028.0	0984.5 7051.9	0903.9 7029.2	-6.5	14.1
10	/028.0	/051.8	/028.2	-23.8	-0.2
G_4	9043.0	9007.5	9039.0	35.7 20.2	5.4 10.2
	9084.0	9005.8	9705.2	20.2	-19.2
	9850.0	90/1.5	90/4.1 (0010.0)	-21.5	-24.1
	003/10	00116	00217	_10.6	123
	9950.0	99857	9953.4	-35.7	_3.4
		(10267.5)	(10182.7)	_	- -
$^{1}D_{2}$	16461.0	16504.0	16457.4	-43.0	36
-2	16745.0	16705.4	16743.9	39.6	1.1
	16794.0	16758.8	16777.5	35.2	16.5
	17008.0	16965.0	17011.6	43.0	-3.6
${}^{3}P_{0}$	20481.0	20481.0	20481.0	0.0	0.0

Таблица 1 (продолжение)

SLJ	E _{expt} [7]	$E_{ m calc1}$ (1)	E_{calc2} (2)	$E_{\rm exp} - E_{\rm calc1}$	$E_{\rm expt} - E_{\rm calc2}$
${}^{3}P_{1}$	21070.0	21062.9	21067.5	7.1	2.5
	21084.0	21091.1	21086.5	-7.1	-2.5
${}^{1}I_{6}$	21148.0	21153.4	21146.5	-5.4	1.5
	21167.0	21161.6	21168.5	5.4	-1.5
	_	(21248.1)	(21242.5)	_	_
	_	(21340.2)	(21262.5)	_	_
	_	(12373.7)	(21579.4)	_	_
	_	(21427.7)	(21599.2)	_	_
	_	(21473.7)	(21637.5)	_	_
	_	(21679.4)	(22043.4)	_	_
	_	(21696.9)	(22101.1)	_	_
	_	(21727.1)	(22112.2)	_	_
${}^{3}P_{2}$	22233.0	22230.0	22220.7	3.0	12.3
	_	(22239.3)	(22248.3)	_	_
	22238.0	22241.0	22250.3	-3.0	-12.3
	_	(22330.6)	(22429.7)	_	_
${}^{1}S_{0}$	_	(46162.0)	(46170.5)	_	_
σ^{*}		. ,	. ,	20.9	12.8
	•	•			

Примечание. $\sigma = \sqrt{\frac{\sum\limits_{i=1}^{N} \left[E_{\text{expt}}(i) - E_{\text{calc}}(i) \right]^2}{(N-N_p)}}$ — среднеквадратичное отклонение вычисленных значений энергии от экспериментальных данных, где N — количество экспериментальных данных, N_p — число подгоночных параметров. SLJ = (2S + 1)LJ — мультиплет.

выступают параметры ковалентности. Параметры ковалентности, полученные таким образом для YPO₄ · Pr³⁺ (табл. 3), удовлетворительно согласуются с параметрами, приведенными для хлоридов [17]: $\gamma_{\sigma f} = -0.0222$ и $\gamma_{\pi f} = 0.0092$. Таким образом, по экспериментальным данным оптической спектроскопии можно определять параметры ковалентности, которые обычно получают в экспериментах по двойному электронно-ядерному резонансу или рассчитываются с помощью микроскопических моделей.

Таблица 2. Параметры кристаллического поля, определенные в приближении слабого (1) и аномально сильного (2) конфигурационных взаимодействий

$B_q^k \mathrm{cm}^{-1}$	B_{0}^{2}	B_{0}^{4}	B_{4}^{4}	B_{0}^{6}	B_{4}^{6}
$(1) (2) B_t^p / \Delta_d, 10^{-4} (2)$	81 134 B_2^3/Δ_d 223	298 302 B_2^5/Δ_d 216	1069 1052	-1290 -1330	-34 -10

Таблица 3. Параметры гамильтониана кристаллического поля(2)

$\gamma_{\sigma f}$	$\gamma_{\pi f}$	$\Delta_{c1}, \mathrm{cm}^{-1}$	$\Delta_{c2}, \ \mathrm{cm}^{-1}$	$\Delta_{c3}, \ \mathrm{cm}^{-1}$	Δ_d , cm ⁻¹
-0.0136	0.0115	6739	9669	17576	21534

91

Заключение

Установлено, что наилучшее описание штарковского расщепления мультиплетов иона \Pr^{3+} в монокристалле УРО₄ достигается с помощью модифицированного гамильтониана кристаллического поля, полученного в приближении сильного конфигурационного взаимодействия. В этом гамильтониане учитывается, что возбужденные конфигурации $4f^{N-1}5d$ и конфигурации с переносом заряда имеют существенно разные энергии. Полученные результаты позволяют утверждать, что необходимо учитывать как влияние конфигураций противоположной четности, так и влияние конфигураций с переносом заряда.

В результате описания кристаллического расщепления мультиплетов иона празеодима также получены параметры четного и нечетного кристаллических полей и параметры ковалентности.

Список литературы

- Kornienko A.A., Kaminskii A.A., Dunina E.B. // Phys. Stat. Sol. (b). 1990. Vol. 157. N 1.P. 267.
- [2] Корниенко А.А., Дунина Е.Б., Янкевич В.Л. // Письма в ЖТФ. 1994. Т. 20. С. 27.
- [3] Thorne J.R.G., Jones M., McCaw C.S., Murdoch K.M., Denning R.G., Khaidukov N.M. // J. Phys.: Condens. Matter. 1999. Vol. 11. P. 7851.
- [4] Корниенко А.А., Каминский А.А., Дунина Е.Б. // ЖЭТФ. 1999. Т. 116. Вып. 6. С. 2087.
- [5] Faucher M.D., Tanner P.A., Mak C.S.K. // J. Phys. Chem. 2004. Vol. 108. P. 5278.
- [6] Корниенко А.А., Дунина Е.Б. // Опт. и спектр. 2004. Т. 97. № 1. С. 75.
- [7] Moune O.K., Faucher M.D., Edelstein N. // J. Lumin. 2002. Vol. 96. P. 51.
- [8] Dunina E.B., Kornienko A.A., Fomicheva L.A. // Cent. Eur. J. Phys. 2008. Vol. 6. N 3. P. 407.
- [9] Фомичева Л.А., Корниенко А.А., Дунина Е.Б. // ЖТФ. 2007. Т. 77. Вып. 10. С. 6.
- [10] Фомичева Л.А., Корниенко А.А., Дунина Е.Б. // Молодежь в науке — 2007: Приложение к журналу "Весці Нацыянальнай акадэміі навук Беларусі". Сер. физ.-мат. наук; Сер. физ.-техн. наук; Сер. хим. наук. Минск: Белорусская наука, 2008. Ч. 3. С. 60.
- [11] Фомичева Л.А., Корниенко А.А., Дунина Е.Б. // Опт. и спектр. 2008. Т. З. № 105. С. 364.
- [12] Фомичева Л.А., Корниенко А.А., Дунина Е.Б. // ЖПС. 2010. Т. 77. № 2. С. 173.
- [13] *Wybourne B.G.* Spectroscopic Properties of Rare Earths. NY., London, Sydney: John Wiley and Sons, Inc., 1965. 236 p.
- [14] Корниенко А.А. Теория спектров редкоземельных ионов в кристаллах. Курс лекций. Витебск. Изд-во УО ВГУ им. П.М. Машерова, 2003. 128 с.
- [15] Корниенко А.А., Дунина Е.Б. // Письма в ЖЭТФ. 1994.
 Т. 59. № 6. С. 385.
- [16] Milligan W.O., Mullica D.F., Beall G.W., Boatner L.A. // Inorg. Chim. Acta. 1982. Vol. 60. P. 39.
- [17] Newman D.J., Curtis M.M. // J. Phys. Chem. Solids. 1969. Vol. 30. P. 2731.