КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ ИНТЕНСИВНОСТЕЙ АБСОРБЦИОННЫХ ПЕРЕХОДОВ НАНОКОМПЛЕКСОВ КУ(MoO4)2:Pr3+

Экспериментальными методами подробно исследованы спектральные свойства КY(MoO4)2:Pr3+ и установлено, что для корректного описания интенсивностей абсорбционных переходов необходимо учитывать конфигурационное взаимодействие. Поэтому в данной работе выполнено компьютерное моделирование абсорбционных переходов с учетом влияния возбужденных конфигураций.

Таблица

Поглощение с уровня $^3H_4 \rightarrow$	Энергии переходов в см ⁻¹	Экспери- ментальные значения	Без учета конфигурационного взаимодействия	с учетом конфигурационного взаимодействия
		$S_{sken} \times 10^{20}$	$S_{gblq} \times 10^{20}$	$S_{6614} \times 10^{20}$
$^{3}H_{6} + ^{3}F_{2}$	4600	16,453	15,681	16,243
${}^{3}F_{3} + {}^{3}F_{4}$	6510	12,953	13,560	13,286
$^{1}G_{4}$	9920	0,273	0,156	0,230
$^{1}D_{2}$	16840	1.560	0,540	1.208
$^{3}P_{0}$	20620	1,717	2.928	1,888
${}^{1}I_{6} + {}^{3}P_{1}$	21350	3,653	3,912	3,771
$^{3}P_{2}$	22350	4,580	1,262	4,079
c			1,908	0,437

Результаты расчетов, приведенные в таблице, показывают, что при учете конфигурационного взаимодействия среднеквадратичное отклонение с вычисленных сил линий S от экспериментальных уменьшается в четыре раза. Таким образом, конфигурационное взаимодействие оказывает существенное влияние на свойства высоколежащих мультиплетов.

Список использованных источников

 Weijie Guo, Yanfu Lin, Xinghong Gong et al. Spectroscopic properties of ^{Pr³⁺}: KY(MoO₄)₂ crystal as a visible laser gain medium, J. of Physics and Chemistry of Solids 69 (2008) 8-15