Полученные результаты показывают, что хлопкополиэфирная пневмомеханическая пряжа 11,8 текс с использованием микроволокон обладает достаточно высокой разрывной нагрузкой, равномерностью по свойствам и небольшой круткой.

УДК 677.025.3/.6

Доц. Буткевич В.Г., проф. Коган А.Г. (ВГТУ)

ТЕОРЕТИЧЕСКОЕ ОПИСАНИЕ ПРОЦЕССА РАЗРАБОТКИ ТРИКОТАЖНОГО ЛОСКУТА НА КОМБИНИРОВАННОЙ КОНЦЕРВАЛЬНОЙ МАШИНЕ

Кризис сырья заставляет предприятия текстильной промышленности бережно относиться к переработке волокнистых отходов и получения восстановленных волокон. Поэтому задача регенерации в волокно тканого и трикотажного лоскута актуальна.

Проникновение зуба гарнитуры в бородку лоскута происходит по оссиметричной схеме. Решая задачу проникновения иглы в лоскут считаем последний вязкой средой. Пренебрегая действием сил тяжести и считая просвет между иглой и лоскутом малым, применим к слою, отделенному в процессе проникновения, приближенные уравнения установившегося течения вязкого слоя, ограниченного поверхностями вращения.

В результате получаем суммарную силу давления в виде

$$P=P_0+\frac{3\mu V}{\ell^3}\Big(R^2-r^2\Big)$$

где ${\bf P}_0$ - начальное давление; ${\bf R}$ - радиус конца зуба; l - расстояние между нижней частью бородки и зубом в произвольный момент времени.

Анализ данной формулы показывает, что сила давления, а следовательно и сопротивления среды зависит от угла при вершине зуба гарнитуры. Необходимо стремиться к уменьшению данного угла. При разработке лоскута на начальной стадии проникновения иглы силы сопротивления давления сравнительно малы, и на суммарную силу наибольшее влияние оказывает сопротивление трения. При значительном проникновении зуба в лоскут сопротивление давления становится больше, чем сопротивление трения, причем силы сопротивления давления по мере уменьшения l значительно возрастают.

УЛК 677.022

Студ. Семенова Л.И., студ. Белоусова Е.В., доц. Соколов Л.Е., ст. преп. Конопатов Е.А. (ВГТУ)

ОПТИМИЗАЦИЯ РАБОТЫ ВЫТЯЖНОГО ПРИБОРА ПРЯДИЛЬНОЙ МАШИНЫ ДЛЯ ПЕРЕРАБОТКИ НИЗКОНОМЕРНОГО ЛЬНЯНОГО ВОЛОКНА

Целью проведенных теоретико-экспериментальных исследований являлось оптимизация работы вытяжного прибора и определение математических моделей зависимости неровноты пряжи от параметров работы вытяжного прибора при переработке льняного волокна в пряжу, используемую для получения тканей технического назначения и трикотажных изделий.

При исследовании штапельной длины волокна была построена диаграмма распределения волокон по длинам. Оказалось, что свыше 10% волокон имеют длину, превышающую разводку вытяжного прибора. Для обеспечения работы вытяжного прибора за счёт снижения сил вытягивания и снижения влияния крутки на увеличение сил вытягивания была проведена модернизация вытяжного прибора. Модернизация заключалась в установке дополнитель-