# Polarized spectroscopy of Sm<sup>3+</sup> ions in monoclinic KGd(WO<sub>4</sub>)<sub>2</sub> crystals

Amandine Baillard<sup>1,\*</sup>, Pavel Loiko<sup>1</sup>, Daniel Rytz<sup>2</sup>, Sebastian Schwung<sup>2</sup>, Anatoly Pavlyuk<sup>3</sup>, Aleksei Kornienko<sup>4</sup>, Elena Dunina<sup>4</sup>, Liudmila Fomicheva<sup>5</sup>, Michaël Fromager<sup>1</sup>, Alain Braud<sup>1</sup>, and Patrice Camy<sup>1</sup>

<sup>1</sup>Centre de Recherche sur les Ions, les Matériaux et la Photonique (CIMAP), UMR 6252 CEA-CNRS-ENSICAEN, Université de Caen Normandie, 6 Blvd Maréchal Juin, 14050 Caen, France

<sup>2</sup>EOT GmbH, Struthstraße 2, D-55743 Idar-Oberstein, Germany

<sup>3</sup>Nikolaev Institute of Inorganic Chemistry, SB of RAS, 3 Lavrentyev Ave., 630090 Novosibirsk, Russia

<sup>4</sup>Vitebsk State Technological University, 72 Moskovskaya Ave., 210035 Vitebsk, Belarus

<sup>5</sup>Belarusian State University of Informatics and Radioelectronics, 6 Brovka St., Minsk 220027, Belarus

**Abstract.** We report on a polarization-resolved spectroscopic study of Sm<sup>3+</sup>-doped monoclinic KGd(WO<sub>4</sub>)<sub>2</sub> crystals. The transition probabilities for Sm<sup>3+</sup> ions were calculated using a modified Judd-Ofelt theory. For the  ${}^{4}G_{5/2} \rightarrow {}^{6}H_{9/2}$  transition in the red spectral range, the stimulated-emission cross-section is  $5.59 \times 10^{-21}$  cm<sup>2</sup> at 649.0 nm (for light polarization  $E \parallel N_{p}$ ) and the luminescence lifetime of the  ${}^{4}G_{5/2}$  state is 719 µs (0.4 at.% Sm<sup>3+</sup>-doping). Sm:KGd(WO<sub>4</sub>)<sub>2</sub> is promising for orange and red lasers.

#### 1 Introduction

Trivalent samarium ions (Sm3+) possess an electronic configuration of [Xe]4f<sup>5</sup>, with a group of lower-lying <sup>6</sup>F<sub>J</sub> and <sup>6</sup>H<sub>J</sub> multiplets (<sup>6</sup>H<sub>5/2</sub> is the ground-state) and a metastable state  ${}^{4}G_{5/2}$ . This energy-level structure gives rise to multiple emissions in the visible and near-infrared, among which the transitions in orange ( ${}^{4}G_{5/2} \rightarrow {}^{6}H_{7/2}$ ), red  $({}^{4}G_{5/2} \rightarrow {}^{6}H_{9/2})$  and deep-red  $({}^{4}G_{5/2} \rightarrow {}^{6}H_{11/2})$  are of main interest for the development of visible laser sources [1]. So far, only a few Sm<sup>3+</sup>-doped crystals (e.g., LiYF<sub>4</sub> and SrAl<sub>12</sub>O<sub>19</sub>) were studied in this regard. Monoclinic double tungstates represent a family of laser host matrices being very suitable for doping with trivalent rare-earth (RE<sup>3+</sup>) ions. They feature high absorption and emission crosssections of RE<sup>3+</sup> ions with a strong polarization anisotropy and weak concentration quenching of luminescence. Visible laser emission was recently achieved from a stoichiometric KEu(WO<sub>4</sub>)<sub>2</sub> crystal [2].

In the present work, we report on a polarization-resolved spectroscopic study of  $Sm^{3+}$  ions in monoclinic potassium gadolinium double tungstate (KGd(WO<sub>4</sub>)<sub>2</sub>) crystal, for the first time, with the goal of developing novel gain media for visible lasers.

### 2 Crystal growth

A series of Sm<sup>3+</sup>-doped KGd(WO<sub>4</sub>)<sub>2</sub> crystals was grown by the Top-Seeded Solution Growth (TSSG) method using K<sub>2</sub>W<sub>2</sub>O<sub>7</sub> as a solvent and [010]-oriented seeds. Three doping levels were studied, 0.4, 0.8 and 20 at.% of Sm<sup>3+</sup>. The crystals are monoclinic (sp. gr. C<sup>6</sup><sub>2h</sub> – C2/c). The Sm<sup>3+</sup> ions replace for the host-forming Gd<sup>3+</sup> cations (ionic radii:  $R_{\rm Gd} = 1.053$  Å and  $R_{\rm Sm} = 1.079$  Å for VIIIfold oxygen coordination) in a single type of sites (C<sub>2</sub>). The Sm:KGd(WO<sub>4</sub>)<sub>2</sub> crystal is optically biaxial, and its optical properties are described in the optical indicatrix frame  $N_{\rm p}$ ,  $N_{\rm m}$  and  $N_{\rm g}$ .

### 3 Polarized spectroscopy

The polarized absorption cross-section,  $\sigma_{abs}$ , spectra of Sm<sup>3+</sup> ions in the violet and blue spectral ranges are shown in Fig. 1. The spectra are strongly polarized, with  $\boldsymbol{E} \parallel N_{\rm m}$  being the preferable pump polarization. In the spectral range addressed by commercial 2 $\omega$ -OPSLs, the maximum  $\sigma_{abs}$  is  $0.76 \times 10^{-20}$  cm<sup>2</sup> at 487.8 nm corresponding to an absorption bandwidth (FWHM) of only 2.7 nm. This absorption peak corresponds to the spin-forbidden ( $\Delta S \neq 0$ )  $^{6}\text{H}_{5/2} \rightarrow ^{4}\text{M}_{15/2}$  transition. At shorter wavelengths, an intense absorption band is related to the spin-allowed ( $\Delta S = 0$ )  $^{6}\text{H}_{5/2} \rightarrow ^{6}\text{P}_{3/2}$  transition. The corresponding  $\sigma_{abs}$  is about an order of magnitude higher,  $8.37 \times 10^{-20}$  cm<sup>2</sup> at 404.5 nm (FWHM, 0.9 nm).



**Fig. 1.** (a,b) Polarized absorption cross-sections,  $\sigma_{abs}$ , for Sm<sup>3+</sup> ions in the KGd(WO<sub>4</sub>)<sub>2</sub> crystal in the blue-violet spectral range.

Corresponding author: amandine.baillard@ensicaen.fr

**Table 1.** Probabilities of spontaneous radiative transitions for  $\text{Sm}^{3+}$  ions in the KGd(WO<sub>4</sub>)<sub>2</sub> crystal calculated using the Judd-Ofelt theory:  $\lambda_{em}$  – mean emission wavelength,  $A_{JJ'}$  – transition probability (ED – electric dipole, MD – magnetic dipole),  $\beta_{JJ'}$  – luminescence branching ratios.

| ${}^4\mathrm{G}_{5/2} \rightarrow$                                  | λ <sub>em</sub> (nm) | βjj (%) | Ајј <sup>,</sup> (s <sup>-1</sup> )      |
|---------------------------------------------------------------------|----------------------|---------|------------------------------------------|
| <sup>6</sup> F <sub>11/2</sub>                                      | 1355.6               | 0.05    | 0.66 <sup>ED</sup>                       |
| <sup>6</sup> F9/2                                                   | 1156.9               | 0.8     | 10.59 <sup>ED</sup>                      |
| <sup>6</sup> F <sub>7/2</sub>                                       | 1026.3               | 1.0     | 12.18 <sup>ED</sup> +1.74 <sup>MD</sup>  |
| ${}^{6}F_{5/2} {+}^{6}F_{3/2} {+} \\ {}^{6}H_{15/2} {+}^{6}F_{1/2}$ | 903.0                | 8.9     | $104.3^{\text{ED}} + 16.75^{\text{MD}}$  |
| <sup>6</sup> H <sub>13/2</sub>                                      | 794.2                | 0.9     | 12.82 <sup>ED</sup>                      |
| <sup>6</sup> H <sub>11/2</sub>                                      | 716.3                | 8.4     | 114.1 <sup>ED</sup>                      |
| <sup>6</sup> H <sub>9/2</sub>                                       | 655.0                | 40.2    | 548.2 <sup>ED</sup>                      |
| <sup>6</sup> H <sub>7/2</sub>                                       | 607.2                | 33.8    | 434.5 <sup>ED</sup> +25.54 <sup>MD</sup> |
| <sup>6</sup> H <sub>5/2</sub>                                       | 564.1                | 6.0     | 49.93 <sup>ED</sup> +31.27 <sup>MD</sup> |

Based on the measured polarized absorption spectra, the 4f – 4f transition probabilities for Sm<sup>3+</sup> in the KGd(WO<sub>4</sub>)<sub>2</sub> crystal were calculated using the modified Judd-Ofelt (mJ-O) theory accounting for configuration interaction [3]. The obtained intensity parameters are  $\Omega_2 = 8.027$ ,  $\Omega_4 = 7.210$ ,  $\Omega_6 = 2.322$  [10<sup>-20</sup> cm<sup>2</sup>] and  $\alpha = -0.017$  [10<sup>-4</sup> cm]. The probabilities of spontaneous radiative transitions from the metastable  ${}^4G_{5/2}$  Sm<sup>3+</sup> state are listed in Table 1. The radiative lifetime,  $\tau_{rad}$ , of this manifold is 734 µs. For laser transitions,  ${}^4G_{5/2} \rightarrow {}^6H_{9/2}$  (in the red) and  ${}^4G_{5/2} \rightarrow {}^6H_{7/2}$  (in the orange), the luminescence branching ratios  $\beta_{JJ'}$  are 40.2% and 33.8%, respectively.



**Fig. 2.** Polarized stimulated-emission (SE) cross-sections,  $\sigma_{\text{SE}}$ , of Sm<sup>3+</sup> ions in the KGd(WO<sub>4</sub>)<sub>2</sub> crystal: (a) orange, the  ${}^{4}\text{G}_{5/2} \rightarrow {}^{6}\text{H}_{7/2}$  transition; (b) red, the  ${}^{4}\text{G}_{5/2} \rightarrow {}^{6}\text{H}_{9/2}$  transition.

The stimulated-emission (SE) cross-sections,  $\sigma_{SE}$ , for orange and red Sm<sup>3+</sup> emissions were calculated using the Füchtbauer-Ladenburg equation based on the measured polarized luminescence spectra and the  $\tau_{rad}$  and  $\beta_{JJ}$  values derived from the mJ-O theory. The  $\sigma_{SE}$  spectra exhibit a strong polarization anisotropy which is a prerequisite for linearly polarized laser emission, as shown in Fig. 2. For the  ${}^{4}G_{5/2} \rightarrow {}^{6}H_{9/2}$  transition, the peak  $\sigma_{SE}$  is  $5.59 \times 10^{-21}$  cm<sup>2</sup> at 649.0 nm and the emission bandwidth (FWHM) is 1.4 nm (for  $E \parallel N_{p}$ ). For the  ${}^{4}G_{5/2} \rightarrow {}^{6}H_{7/2}$  transition, the SE cross-sections are lower, with a peak value of  $3.95 \times 10^{-21}$  cm<sup>2</sup> at 610.0 nm and an emission bandwidth of 2.1 nm (for  $E \parallel N_{m}$ ).

The RT luminescence decay curves from the  ${}^{4}G_{5/2}$  Sm<sup>3+</sup> state were measured for different doping levels, see Fig. 3. For 0.4 at.% Sm<sup>3+</sup>, the luminescence decay is nearly single exponential in agreement with a single type of sites for the dopant ions (C<sub>2</sub> symmetry), and the luminescence lifetime is 719 µs in good agreement with the radiative

one. On increasing the doping level (*i.e.*, decreasing the distances between the active ions), the cross-relaxation processes  $({}^{4}G_{5/2} + {}^{6}H_{5/2} \rightarrow {}^{6}F_{J} + {}^{6}F_{J'})$  between adjacent Sm<sup>3+</sup> ions are enhanced leading to luminescence quenching and non-single-exponential decay.



**Fig. 3.** Luminescence decay curves from the  ${}^{4}G_{5/2}$  Sm<sup>3+</sup> state in the KGd(WO<sub>4</sub>)<sub>2</sub> crystal for various doping levels, *circles* – experimental data, *curves* – fits using the Inokuti-Hirayama model.

The decay curves were fitted using the Inokuti-Hirayama model for multipolar interactions [4], yielding the best-fit parameters  $\tau_0 = 750 \ \mu s$  (the intrinsic lifetime),  $R_0 = 8.2 \ \text{Å}$  (the critical distance for energy transfer), and s = 8 (the parameter for dipole-quadrupole interactions). The average luminescence lifetime  $<\tau_{\text{lum}}>$  decreased to 686  $\ \mu s$  for 0.8 at.% Sm<sup>3+</sup> and further to 154  $\ \mu s$  for 20 at.% Sm<sup>3+</sup>.

## **4** Conclusion

To conclude,  $\text{Sm}^{3+}$ -doped KGd(WO<sub>4</sub>)<sub>2</sub> crystals are appealing for the development of visible lasers due to (i) relatively broad absorption around ~480 nm, (ii) high SE cross-sections with a strong polarization-anisotropy in the red and orange spectral ranges, (iii) a relatively long luminescence lifetime of the  ${}^{4}\text{G}_{5/2}$  metastable state and weak luminescence self-quenching via cross-relaxation. Further evaluation of the potential of these crystals require the study of excited-state absorption (ESA) in the visible. *Funding*. Agence Nationale de la Recherche (ANR-22-CE08-0025-01, NOVELA); Contrat de plan État-Région (CPER) de Normandie.

### References

- C. Kränkel, D. T. Marzahl, F. Moglia, G. Huber, P. W. Metz, Laser Photonics Rev. 10, 548 (2016).
- P. Loiko, D. Rytz, S. Schwung, P. Pues, T. Jüstel, J.-L. Doualan, P. Camy, Opt. Lett. 46, 2702 (2021).
- P. Loiko, A. Volokitina, X. Mateos, E. Dunina, A. Kornienko, E. Vilejshikova, M. Aguilo, F. Diaz, Opt. Mater. 78, 495 (2018).
- 4. M. Inokuti, F. Hirayama, J. Chem. Phys. 43, 1978 (1965).