УДК: 621.3.084.827 ЭЛЕКТРОЕМКОСТНОЙ ДАТЧИК УРОВНЯ ТОПЛИВА

А.А. ДЖЕЖОРА, В.В. РУБАНИК, В.К. САВЧУК УО «ВИТЕБСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ» ГНУ «ИНСТИТУТ ТЕХНИЧЕСКОЙ АКУСТИКИ НАН Беларуси» УО «ВИТЕБСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. П.М. Машерова» Витебск, Беларусь

В электроемкостных датчиках может быть достигнуто линейное изменение емкости на протяжении сравнительно большой длины и по этой причине они используются для контроля уровня самых разнообразных сред [1]. Рассмотрим датчик уровня простой в техническом обслуживании, который не требует разборки и последующей градуировки (рис. 1) [2].

Рис. 1. Поперечное сечение датчика уровня: 1, 2 – потенциальные электроды; 3 – охранные электроды; 4 – изоляционный слой

Потенциальные электроды датчика 1 и 2, разделены охранными электродами 3, потенциал которых равен нулю. Все электроды расположены в изоляционном слое 4. Поле такого датчика разбито на две области: паразитную и рабочую. Паразитная область создается частью силовых линий, замыкающихся на охранный электрод 3, и исключается из измерения. Рабочая область поля образуется за пределами изоляционного слоя, непосредственно в области расположения контролируемой жидкости. Вследствие этого происходит уменьшение первоначальной емкости датчика за счет исключения максимального потока силовых линий между потенциальными электродами 1, 2 и возрастание чувствительности датчика. Граница зоны, с которой начинается контроль, определяется зазором между потенциальными электродами, размером охранного электрода и диэлектрической проницаемостью самого изоляционного слоя ε_1 .

Рис. 2. Зависимость относительного изменения емкости от относительной толщины слоя изоляции

Результаты расчета чувствительности $\Delta C/C$ датчика в зависимости от относительной толщины изоляционного слоя $h/(h_1 = h_2)$ рис. 2. показывают, что чувствительность датчика, содержащего охранный электрод 3 всегда выше чувствительности датчика, без охранного электрода, независимо от диэлектрической проницаемости и толщины слоя изоляции.

Этот вывод подтверждают и экспериментальные данные. Так при полном погружении датчика в дизельное топливо относительное изменение емкости составило 100 %, в то время как для датчика без охранного электрода – 50 %. Такой датчик может использоваться и для контроля уровня сыпучих сред. Как и в случае контроля уровня дизельного топлива его чувствительность в два раза выше чувствительности датчика без охранного электрода.

Работа выполнена при финансовой поддержке ГКПНИ «Техническая диагностика - 36» (№ 20062708)

СПИСОК ЛИТЕРАТУРЫ

1. Пат. 2196966 РФ, МКИ G 01 F 23/26. Датчик для измерения уровня жидкости: / Г. В.Медведев, В. А. Мишин, В. Н. Шивринский. – № 2001108624/28; заявл. 30.03.01 ; опубл. 20.01.03 , Бюл. № 2.

2. Положительное решение от 19. 01. 2009 г. по заявке № а 20071045 на выдачу патента G 01F 23/26. Датчик измерения уровня жидкой или сыпучей среды / А. А. Джежора, В. В. Рубаник, В. К. Савчук, А. В. Кузьминич