Оптика и спектроскопия

OPTICS AND SPECTROSCOPY

УДК 535.343.2,535.35

РОСТ КРИСТАЛЛА И АНАЛИЗ ИНТЕНСИВНОСТЕЙ f – f-ПЕРЕХОДОВ ИОНОВ ПРАЗЕОДИМА В ИТТРИЙ-АЛЮМИНИЕВОМ ОРТОБОРАТЕ

*М. П. ДЕМЕШ*¹⁾, *К. Н. ГОРБАЧЕНЯ*¹⁾, *В. Э. КИСЕЛЬ*¹⁾, *Е. А. ВОЛКОВА*²⁾, *В. В. МАЛЬЦЕВ*²⁾, *Е. В. КОПОРУЛИНА*²⁾, *А. А. КОРНИЕНКО*³⁾, *Е. Б. ДУНИНА*³⁾, *Н. В. КУЛЕШОВ*¹⁾

 ¹⁾Белорусский национальный технический университет, пр. Независимости, 65, 220013, г. Минск, Беларусь
²⁾Московский государственный университет им. М. В. Ломоносова, Ленинские горы, 1, 119991, г. Москва, Россия
³⁾Витебский государственный технологический университет, пр. Московский, 72, 210038, г. Витебск, Беларусь

Кристалл иттрий-алюминиевого бората YAl₃(BO₃)₄, активированный ионами Pr³⁺, выращен методом кристаллизации из раствора в расплаве. Размер полученного образца составил $20 \times 10 \times 10$ мм. Коэффициент распределения иона-активатора изменяется от 0,6 до 0,8, что приводит к средней концентрации ионов Pr³⁺ 1,1 · 10²⁰ см⁻³. Спектры поглощения из основного состояния ³H₄ зарегистрированы в поляризованном свете. Кристалл обладает выраженной анизотропией поглощения. С использованием модифицированной теории Джадда – Офельта определены интенсивности переходов с поглощением и испусканием, а также коэффициенты ветвления люминесценции и время жизни метастабильных уровней ³P₀ и ¹D₂.

Ключевые слова: кристаллизация из раствора в расплаве; редкоземельные алюминиевые бораты; празеодим; поглощение; интенсивности переходов.

Благодарность. Исследования проведены при финансовой поддержке Российского фонда фундаментальных исследований (проект № 18-29-12091 мк).

Образец цитирования:

Демеш МП, Горбаченя КН, Кисель ВЭ, Волкова ЕА, Мальцев ВВ, Копорулина ЕВ, Корниенко АА, Дунина ЕБ, Кулешов НВ. Рост кристалла и анализ интенсивностей f – f-переходов ионов празеодима в иттрий-алюминиевом ортоборате. *Журнал Белорусского государственного университета.* Физика. 2022;1:4–13. https://doi.org/10.33581/2520-2243-2022-1-4-13

Сведения об авторах см. на с. 12-13.

For citation:

Demesh MP, Gorbachenya KN, Kisel VE, Volkova EA, Maltsev VV, Koporulina EV, Kornienko AA, Dunina EB, Kuleshov NV. Crystal growth and f - f transition intensities analysis of praseodymium ions in yttrium-aluminum orthoborates. *Journal of the Belarusian State University. Physics.* 2022;1:4–13. Russian. https://doi.org/10.33581/2520-2243-2022-1-4-13

Information about the authors see p. 12–13.

CRYSTAL GROWTH AND f – f TRANSITION INTENSITIES ANALYSIS OF PRASEODYMIUM IONS IN YTTRIUM-ALUMINUM ORTHOBORATES

M. P. DEMESH^a, K. N. GORBACHENYA^a, V. E. KISEL^a, E. A. VOLKOVA^b, V. V. MALTSEV^b, E. V. KOPORULINA^b, A. A. KORNIENKO^c, E. B. DUNINA^c, N. V. KULESHOV^a

^aBelarusian National Technical University, 65 Niezaliežnasci Avenue, Minsk 220013, Belarus
^bLomonosov Moscow State University, 1 Leninskie Gory, Moscow 119991, Russia
^cVitebsk State University of Technology, 72 Maskoŭski Avenue, Vitebsk 210038, Belarus
Corresponding author: M. P. Demesh (maxim.demesh@bntu.by)

A Pr^{3^+} : YAl₃(BO₃)₄ crystal with sizes of 20 × 10 × 10 mm was grown from high-temperature solution and its structural and spectroscopic properties were investigated. The distribution coefficient of praseodymium ranged from 0.6 to 0.8, that yield to the Pr^{3^+} ion concentration of $1.1 \cdot 10^{20}$ cm⁻³. Visible and infrared groundstate absorption (${}^{3}H_{4}$) was measurement in dependence on the polarisation. The absorption spectra of the Pr^{3^+} : YAl₃(BO₃)₄ exhibit pronounced polarisation anisotropy. The modified Judd – Offelt theory was applied to evaluate the transitions intensities in absorption and emission, branching ratios and radiative lifetimes of the metastable levels ${}^{3}P_{0}$ and ${}^{1}D_{2}$.

Keywords: flux growth; rare-earth aluminum borates; praseodymium; absorption; transition intensities.

Acknowledgements. This research was supported by Russian Foundation for Basic Research (project No. 18-29-12091 mk).

Введение

Для твердотельных лазеров видимой области спектра используют кристаллы, активированные ионами редкоземельных элементов (Pr^{3+} , Tb^{3+} , Dy^{3+} , Sm^{3+} , Eu^{3+}), которые позволяют получать видимую генерацию при непосредственной накачке лазерными диодами видимого спектрального диапазона [1]. На данный момент можно утверждать, что ион празеодима (Pr^{3+}) является наиболее перспективным, поскольку на празеодимсодержащих кристаллах получена эффективная генерация на многих переходах этого иона в видимом спектральном диапазоне и достигнуты высокие мощности лазерного излучения [2–6]. Фторсодержащие кристаллы, обладающие малой энергией фононов, меньшим воздействием кристаллического поля на ион-активатор и большей шириной запрещенной зоны по сравнению с оксидными кристаллами, наилучшим образом подходят для активации их ионами празеодима. Тем не менее была получена генерация и в оксидных матрицах Pr^{3+} : YAlO₃ [5], Pr^{3+} : SrAl₁₂O₁₉ [6]. Работа исследователей по поиску празеодимсодержащих сред активно продолжается в наши дни, что подкрепляется доступностью лазерных диодов на основе InGaN, излучающих в сине-фиолетовой области спектра.

Среди оксидных кристаллов особый интерес представляют кристаллы алюминиевых ортоборатов, которые обладают относительно низкой силой кристаллического поля (18 000 ± 1000 см⁻¹ [7]), которая сравнима с таковой фторидных кристаллов. К настоящему времени имеется ряд работ, посвященных люминесцентным свойствам празеодимсодержащих кристаллов ортоборатов [8; 9], а также анализу кристаллического поля [10]. При этом размеры исследуемых в них образцов не превышали $3 \times 3 \times 5$ мм. В данной работе были рассмотрены рост и оптические свойства кристалла Pr^{3+} : YAl₃(BO₃)₄ (далее – Pr : YAB) для оценки перспективности его использования в качестве активной среды твердотельных лазеров видимой области спектра.

Материалы и методы исследования

Кристалл Pr : YAB выращивался на затравку из раствора-расплава в интервале температур 1000–1050 °С. В качестве растворителя использовался хорошо зарекомендовавший себя расплав на основе тримолибдата калия K₂Mo₃O₁₀. Соотношение кристаллообразующих оксидов $R_2O_3 - Al_2O_3 - B_2O_3$ (R = Y, Pr) и растворителя (2 мас. % Y₂O₃, 90 мас. % K₂Mo₃O₁₀, 8 мас. % B₂O₃) в системе составляло 17 и 83 мас. % соответственно. При этом отношение кристаллообразующих компонентов соответствовало стехиометрическому соотношению в формуле, т. е. $R_2O_3 : Al_2O_3 : B_2O_3 = 1 : 3 : 4$ (в мольных долях), а концентрация празеодима в шихте – 2,5 мол. % от позиции иттрия в кристалле. Исходные реагенты $Pr_2O_3, Y_2O_3, Al_2O_3, B_2O_3, K_2MoO_4$ и H_2MoO_3 тщательно измельчались, смешивались и в платиновом тигле емкостью 250 мл помещались в ростовую установку. Борный ангидрид наплавлялся непосредственно в тигель в процессе подготовки опыта во избежание поглощения им паров воды из воздуха. К₂Мо₃O₁₀ представлял собой стехиометрическую смесь MoO₃ и K₂MoO₄. При выращивании кристалла Pr : YAB использовались оксиды празеодима и иттрия чистотой 99,996 %, все остальные реактивы соответствовали стандарту ОСЧ. Предварительно по изменению веса и характера поверхности пробной затравки определялась температура насыщения ($T_{\rm H}$) раствора-расплава. Затем кристаллодержатель с закрепленным на нем кристаллом-затравкой погружался в раствор-расплав при температуре, на 2 °C превышающей $T_{\rm H}$, и температура в кристаллизационной камере в процессе роста понижалась с переменной скоростью 0,04–0,06 °C/ч. Затравки были предварительно получены методом спонтанной кристаллизации из аналогичного по составу раствора-расплава.

Состав выращенного монокристалла Pr : YAB был изучен на аналитическом сканирующем электронном микроскопе LEO 1420VP (Zeiss, Германия) с микроанализатором INCA 350 (Oxford Instruments, Великобритания). Анализ проводился без предварительной подготовки образцов на хорошо развитых естественных ростовых поверхностях граней ромбоэдра. Коэффициент распределения катионов Pr³⁺

рассчитывался по формуле $K_{\text{pacnp}} = \frac{C_{\text{кр}}}{C_{\text{pacns}-\text{pacnn}}}$, где $C_{\text{кр}}$ – измеренное содержание празеодима в кристалле;

С_{раств.-распл} – исходное содержание празеодима в шихте.

Рентгенографические исследования Pr : YAB выполнены при комнатной температуре на порошковом дифрактометре АДП-2 (Co K_{α} -излучение ($\lambda = 1,7903$ Å), непрерывный режим съемки, интервал углов 20 – от 6 до 110°). Для идентификации использовались программный пакет *Match* и база данных PCPDFWIN PDF-2 (*International Centre for Diffraction Data*, ICDD). Параметры элементарной ячейки рассчитывались с помощью программы *DICVOL06* для 29 дифракционных рефлексов [11].

Спектры поглощения исследуемого кристалла, соответствующие переходам из основного состояния ³H₄ на вышележащие, регистрировались в поляризованном свете с помощью двухлучевого спектрофотометра Cary 5000 (*VARIAN*, США). Спектральная ширина щели составляла 1,0 и 0,09 нм для инфракрасного и видимого спектральных диапазонов соответственно.

При регистрации кинетик затухания люминесценции в качестве источника возбуждающего излучения использовался параметрический генератор света LT-2214 (*LOTIS TII*, Беларусь – Япония), накачиваемый третьей гармоникой Nd : YAG-лазера LS-2137 (*LOTIS TII*). Излучение люминесценции фокусировалось на входной щели монохроматора МДР-12 и регистрировалось быстродействующим фотоприемником G5460 (*Hamamatsu Photonics*, Япония), соединенным с осциллографом TDS3052B (*Tektronix*, США).

Результаты и их обсуждение

Структурные свойства кристалла Pr : YAB. Прозрачный, достаточно однородный монокристалл Pr : YAB (рис. 1) выращен на затравку из раствора-расплава следующего состава: 17 мас. % Pr : YAB, 83 мас. % растворителя (2 мас. % Y_2O_3 , 90 мас. % $K_2Mo_3O_{10}$, 8 мас. % B_2O_3). Полученный образец размером $20 \times 10 \times 10$ мм не содержит видимых включений и имеет типичную для боратов со структурой хантита огранку, представляющую собой комбинацию двух тригональных призм и ромбоэдра (см. рис. 1).

Состав кристалла Pr : YAB приведен в табл. 1. Как следует из представленных данных, коэффициент распределения иона празеодима меньше единицы и изменяется в пределах от 0,6 до 0,8. Очевидно, это связано с отличием ионных радиусов катионов Pr^{3+} и Y³⁺ (0,99 и 0,90 Å соответственно [12]). Таким образом, средняя по объему концентрация ионов празеодима N_0 может быть принята равной $1,1 \cdot 10^{20}$ см⁻³, что соответствует содержанию 1,67 ат. %.

Puc. 1. Монокристалл Pr : YAB *Fig. 1.* Pr : YAB monocrystal

Таблица 1

Состав кристалла ($\Pr_x Y_{1-x}$)Al₃(BO₃)₄ (x = 0,025 в исходной шихте)

Table 1

Chemical composition of $(\Pr_x Y_{1-x})Al_3(BO_3)_4$ crystal (x = 0.025 in the melt)

Точка анализа	Состав кристалла	K _{распр}
1	(Pr _{0,015} Y _{0,985})Al ₃ (BO ₃) ₄	0,60
2	(Pr _{0,02} Y _{0,98})Al ₃ (BO ₃) ₄	0,80
3	(Pr _{0,016} Y _{0,984})Al ₃ (BO ₃) ₄	0,64
4	(Pr _{0,015} Y _{0,985})Al ₃ (BO ₃) ₄	0,60
5	(Pr _{0,018} Y _{0,982})Al ₃ (BO ₃) ₄	0,72

Полученный рентгенодифракционный спектр (рис. 2) хорошо согласуется с данными ICDD по иттрий-алюминиевому борату YAl₃(BO₃)₄ (ICDD # 72-1978). По результатам индицирования дифрактограммы с помощью программы *DICVOL06* по 29 разрешенным пикам для гексагональной сингонии установлено, что выращенное соединение демонстрирует следующие параметры элементарной ячейки: a = b = 9,3002(7) Å, c = 7,2434(4) Å, V = 542,57 Å³.

Рис. 2. Сопоставление экспериментальной дифрактограммы Pr : YAB (*a*) и теоретического спектра YAl₃(BO₃)₄ (ICDD # 72-1978) (*б*) *Fig.* 2. XRPD patterns of Pr : YAB crystal (*a*) and calculated from YAl₃(BO₃)₄ CIF-file (ICDD # 72-1978) (*b*)

Оптические свойства кристалла Pr : YAB. На рис. 3 представлен спектр поглощения кристалла Pr : YAB в неполяризованном свете в области прозрачности матрицы 170–2200 нм. В исследуемом спектральном диапазоне наблюдаются несколько полос поглощения. Широкая интенсивная полоса с пиком, приходящимся на длину волны около 233 нм, может быть отнесена к межконфигурационному переходу $4f^2 \rightarrow 4f5d$. При этом наблюдаемое положение данной полосы хорошо согласуется с энергией возбужденной конфигурации $\Delta_d = 43\ 321\pm750\ {\rm cm}^{-1}$, полученной на основе подхода, описанного в [7]. Ряд узких интенсивных линий относятся к переходам иона празеодима между основным состоянием ${}^{3}H_4$ и возбужденными состояниями ${}^{3}F_2$, ${}^{3}F_3$, ${}^{3}F_4$, ${}^{1}G_4$, ${}^{1}D_2$, ${}^{3}P_0$, ${}^{3}P_1$, ${}^{3}P_2$ и ${}^{1}I_6$. При этом высокоэнергетический уровень ${}^{1}S_0$ электронной конфигурации $4f^2$ расположен внутри возбужденной электронной конфигурации $4f^2$ полосы в области длин волн 420 и 650 нм относятся к поглощению примесного иона Cr^{3+} .

Puc. 3. Спектр поглощения кристалла Pr : YAB в неполяризованном свете *Fig. 3.* Unpolarised absorption spectrum of Pr : YAB crystal

Спектры сечения поглощения $\sigma_{\text{погл}}$ иона празеодима в кристалле Pr : YAB показаны на рис. 4. В кристалле наблюдается анизотропия поглощения с преобладанием σ -состояния поляризации. В видимом спектральном диапазоне пиковое значение сечения поглощения $4,9 \cdot 10^{-20}$ см² приходится на длину волны 472,3 нм с шириной полосы 0,66 нм. Однако для накачки существующими лазерными диодами на основе InGaN целесообразно использовать полосу ${}^{3}\text{H}_{4} \rightarrow {}^{3}\text{P}_{2}$, обладающую значениями сечений поглощения около $3 \cdot 10^{-20}$ см², но большей шириной (около 1,6 нм) для двух состояний поляризации.

Рис. 4. Спектры сечения поглощения кристалла Pr : YAB
в поляризованном свете в видимой (a) и инфракрасной (б) областях спектра
Fig. 4. Polarised ground state absorption cross sections
of Pr : YAB in the visible (a) and infrared (b) spectral regions

Для определения излучательных свойств кристалла Pr : YAB была использована модифицированная теория Джадда – Офельта (мД-О) [13], которая, по сравнению с классическим подходом (Д-О), учитывает низкоэнергетическое положение возбужденной f – d-конфигурации, влияющей на интенсивность внутриконфигурационных f – f-переходов. Сила осциллятора электродипольного перехода f_{ED} определяется выражением

$$f_{ED}(JJ') = \frac{8\pi^2 mc}{3h\bar{\lambda}(2J+1)} \left[\frac{\left(n^2+2\right)^2}{9n} \right]_{t=2,4,6} \Omega_t \left[1+2\alpha \left(E_J+E_{J'}+2E_f^0\right) \right] \left| \left\langle 4f^n [SL]J \right\| U^{(t)} \right\| 4f^n [S'L']J' \right\rangle \right|^2,$$

где Ω_t – параметры интенсивности; α – параметр, обусловленный конфигурационным взаимодействием; E_J и $E_{J'}$ – энергии начального и конечного мультиплетов; E_f^0 – среднее значение (центр тяжести) энергии

Таблица 2

4f-конфигурации. Значения матричных элементов $\|U^{(t)}\|$ (табл. 2) определены в приближении промежуточной связи для свободного иона \Pr^{3+} на основе данных работы [10].

Квадраты приведенных матричных элементов $\left\ U^{(t)} \right\ $ для переходов $J \rightarrow J'$ иона Pr ³⁺					
Table 2 Squared matrix-elements $ U^{(t)} $ for the $J \rightarrow J'$ transitions of Pr^{3+} ion					
SLJ	S'L'J'	$U^{(2)}$	$U^{(4)}$	$U^{(6)}$	
³ H ₄	³ H ₅	0,1094	0,2034	0,6095	
	³ H ₆	0,0002	0,0322	0,1408	
	³ F ₂	0,5084	0,4037	0,1188	
	³ F ₃	0,0658	0,3483	0,6994	
	³ F ₃	0,0658	0,3483	0,6994	
	${}^{1}G_{4}$	0,0014	0,0063	0,0221	
	¹ D ₂	0,0020	0,0177	0,0527	
	$^{3}P_{0}$	0,0000	0,1719	0,0000	
	${}^{3}P_{1}$	0,0000	0,1721	0,0000	
	${}^{1}I_{6}$	0,0084	0,0468	0,0214	
	${}^{3}\mathrm{H}_{6}$	0,0020	0,0177	0,0527	
	${}^{3}H_{5}$	0,0000	0,0023	0,0003	
	${}^{3}\text{H}_{6}$	0,0000	0,0701	0,0068	
$^{1}D_{2}$	${}^{3}F_{2}$	0,0140	0,0874	0,0000	
	${}^{3}F_{3}$	0,0327	0,0186	0,0000	
	${}^{3}F_{4}$	0,5845	0,000 1	0,0186	
	${}^{1}G_{4}$	0,3173	0,0513	0,0784	
	${}^{3}\text{H}_{6}$	0,0000	0,1719	0,0000	
³ P ₀	$^{3}H_{5}$	0,0000	0,0000	0,0000	
	³ H ₆	0,0000	0,0000	0,0726	
	${}^{3}F_{2}$	0,2953	0,0000	0,0000	
	³ F ₃	0,0000	0,0000	0,0000	
	$^{3}F_{4}$	0,0000	0,1136	0,0000	
	¹ D ₂	0,0158	0,0000	0,0000	

Экспериментальные значения сил осцилляторов $f_{\exp}(JJ')$ вычислялись на основе зарегистрированных спектров поглощения по формуле

$$f_{\exp}(JJ') = \frac{mc^2}{\pi e^2 N_0 \overline{\lambda}^2} \int \frac{k_{JJ'}^{\pi}(\lambda) + 2k_{JJ'}^{\sigma}(\lambda)}{3} d\lambda,$$

где $k_{JJ'}^{\pi}$ и $k_{JJ'}^{\sigma}$ – коэффициент поглощения для π - и σ -состояний поляризации. Параметры Ω_t и α определялись на основе экспериментальных (f_{exp}) и теоретических (f_{ED} и f_{MD}) значений сил осцилляторов (табл. 3) по методу наименьших квадратов. Вклад магнитодипольного (MD) механизма в общую вероятность переходов был учтен при определении сил осцилляторов в поглощении и испускании. Искомые величины имеют следующие значения: $\Omega_2 = 11,42 \cdot 10^{-20} \text{ см}^2$, $\Omega_4 = 1,93 \cdot 10^{-20} \text{ см}^2$, $\Omega_6 = 8,96 \cdot 10^{-20} \text{ см}^2$ и $\alpha = 0,233 \text{ см}^{-1}$. Среднеквадратичное отклонение составило 0,19 $\cdot 10^{-6}$.

Полученные значения Ω_t и α позволили определить значения вероятностей спонтанных переходов A, коэффициентов ветвления люминесценции β (табл. 4) и излучательного времени жизни $\tau_{_{изл}}$ уровней ${}^{^3}P_0$ и ${}^{^1}D_2$.

Таблица 3

Теоретические (f_{exp}) и экспериментальные (f_{ED} и f_{MD}) значения сил осцилляторов для кристалла Pr : YAB

Table 3

Experimental (f_{exp}) and calculated $(f_{ED} \text{ and } f_{MD})$ oscillator strength in Pr : YAB crystal

SLJ	S'L'J'	$E, \operatorname{cm}^{-1}$	$f_{\rm exp}$	f_{ED}	f_{MD}
³ H ₄	${}^{3}\text{H}_{6} + {}^{3}\text{F}_{2}$	5000	3,643	3,639	—
	${}^{3}F_{3} + {}^{3}F_{4}$	6677	7,517	7,530	0,0008
	${}^{1}G_{4}$	9869	0,352	0,274	0,0005
	¹ D ₂	16 742	1,958	1,651	—
	${}^{3}P_{0}$	20 432	1,557	1,497	—
	${}^{3}P_{1} + {}^{1}I_{6}$	21 321	3,468	3,516	—
	³ P ₂	22 219	6,713	6,761	_

Таблица 4

Вероятности переходов (*A*) и коэффициенты ветвления люминесценции (β) в кристалле Pr : YAB

Table 4

SLJ	S'L'J'	λ, нм	β	A, c^{-1}
³ P ₀	¹ D ₂	2710,0	0,001	55,79
	$^{1}G_{4}$	946,7	0,007	623,88
	$^{3}F_{4}$	746,2	0,032	2681,29
	³ F ₃	708,8	0,000	0,00
	${}^{3}F_{2}$	652,9	0,679	57 350,12
	³ H ₆	632,6	0,145	12 242,13
	${}^{3}H_{5}$	555,9	0,000	0,00
	$^{3}H_{4}$	489,4	0,136	11 456,35
¹ D ₂	${}^{1}G_{4}$	1455,0	0,142	1382,38
	${}^{3}F_{4}$	1029,6	0,570	5557,99
	³ F ₃	959,9	0,042	$401,14^{ED} + 4,66^{MD}$
	${}^{3}F_{2}$	860,1	0,043	$419,60^{ED} + 3,37^{MD}$
	$^{3}H_{6}$	825,2	0,029	286,31
	³ H ₅	699,3	0,002	16,34
	$^{3}H_{4}$	597,3	0,172	1681,26

The calculated radiative probabilities (*A*) and fluorescence branching ratios (β) in Pr : YAB crystal

Приведенный расчет показывает, что основная доля испускаемой с уровня ${}^{3}P_{0}$ энергии (около 68 %) приходится на переход ${}^{3}P_{0} \rightarrow {}^{3}F_{2}$ в красной области спектра. Излучательное время жизни возбужденного состояния ${}^{3}P_{0}$, равное 12 мкс, превосходит таковое у большинства празеодимсодержащих оксидных кристаллов [1]. Однако высокое значение энергии фонона (~1400 см⁻¹) в кристалле YAl₃(BO₃)₄ [10] и малый энергетический зазор между уровнями ${}^{3}P_{0}$ и ${}^{1}D_{2}$ (3463 см⁻¹ [14]) приводят к сильному тушению люминесценции с данного уровня. Оценочное значение скорости безызлучательной релаксации составляет около 1 \cdot 10⁷ с⁻¹ [15]. Кроме того, опустошение верхнего лазерного уровня ускоряется процессами кросс-релаксации ${}^{3}P_{0} \rightarrow {}^{1}D_{2}$: ${}^{3}H_{4} \rightarrow {}^{3}H_{6}$ и ${}^{3}P_{0} \rightarrow {}^{1}G_{4}$ [14]. Зарегистрировать кинетику затухания люминесценции с уровня ${}^{3}P_{0}$ не удалось.

Излучательное время жизни уровня ${}^{1}D_{2}$, определенное по теории мД-О, составило 102 мкс. Больше половины испускаемой с уровня энергии (около 57 %) приходится на спектральную область около 1 мкм (переход ${}^{1}D_{2} \rightarrow {}^{3}F_{4}$). Высокоэнергетический фононный спектр кристалла YAl₃(BO₃)₄ не приводит к многофононной релаксации с уровня ${}^{1}D_{2}$ ввиду относительно большого энергетического зазора (~6500 см⁻¹) между мультиплетами ${}^{1}D_{2}$ и ${}^{3}F_{4}$. Однако резонансный процесс кросс-релаксации ${}^{1}D_{2} \rightarrow {}^{1}G_{4}$: ${}^{3}H_{4} \rightarrow {}^{3}F_{3}$ [16] приводит к безызлучательной релаксации возбуждения с уровня ${}^{1}D_{2}$. Неэкспоненциальный характер затухания люминесценции свидетельствует о наличии кросс-релаксационного тушения люминесценции. Для наглядности на рис. 5 показана кинетика затухания люминесценции с данного уровня. Измеренное время жизни уровня составляет 14 мкс, что приводит к квантовому выходу люминесценции около 14 %.

of the ${}^{1}D_{2}$ level of Pr : YAB crystal

Переходы с уровня ${}^{1}G_{4}$ в кристаллах празеодимсодержащих ортоборатов не представляют интереса ввиду еще меньшего, по сравнению с уровнями ${}^{3}P_{0}$ и ${}^{1}D_{2}$, энергетического зазора (около 2700 см⁻¹) между мультиплетами ${}^{1}G_{4}$ и ${}^{3}F_{4}$, что в совокупности приводит к эффективному тушению люминесценции с данного уровня.

Заключение

В данной работе представлены результаты роста и исследований оптических свойств кристалла $YAl_3(BO_3)_4$, активированного ионами Pr^{3+} . Образец размером $20 \times 10 \times 10$ мм без видимых включений и трещин был выращен методом раствор-расплавной кристаллизации. Усредненное по объему содержание ионов празеодима составило 1,67 ат. %, учитывая среднее значение коэффициента распределения иона-активатора, равное 0,67. На основе поляризованных спектров поглощения определены спектры сечений поглощения в видимой и инфракрасной областях спектра. Набор приведенных матричных элементов был вычислен в L – S-приближении. Модифицированным методом Джадда – Офельта определены параметры интенсивности иона празеодима в кристалле Pr : YAB. На их основе рассчитаны вероятности переходов, коэффициенты ветвления люминесценции, а также излучательное время жизни уровней ${}^{3}P_{0}$ и ${}^{1}D_{2}$, равное 12 и 102 мкс соответственно. Многофононная релаксация в кристалле $YAl_3(BO_3)_4$ приводит к эффективному опустошению уровня ${}^{3}P_{0}$. В свою очередь, уровень ${}^{1}D_{2}$ с временем жизни люминесценции 14 мкс характеризуется квантовым выходом люминесценции около 14 % и кросс-релаксационным механизмом тушения люминесценции.

Библиографические ссылки/References

1. Kränkel C, Marzahl D-T, Moglia F, Huber G, Metz PW. Out of the blue: semiconductor laser pumped visible rare-earth doped lasers. *Laser & Photonics Reviews*. 2016;10(4):548–568. DOI: 10.1002/lpor.201500290.

^{2.} Metz PW, Reichert F, Moglia F, Müller S, Marzahl D-T, Kränkel C, et al. High-power red, orange, and green Pr^{3+} : LiYF₄ lasers. *Optics Letters*. 2014;39(11):3193–3196. DOI: 10.1364/OL.39.003193.

3. Tanaka H, Fujita S, Kannari F. High-power visibly emitting Pr³⁺ : YLF laser end pumped by single-emitter or fiber-coupled GaN blue laser diodes. Applied Optics. 2018;57(21):5923-5928. DOI: 10.1364/AO.57.005923.

4. Saiyu Luo, Xigun Yan, Qin Cui, Bin Xu, Huiying Xu, Zhiping Cai. Power scaling of blue-diode-pumped Pr : YLF lasers at 523.0, 604.1, 606.9, 639.4, 697.8 and 720.9 nm. Optics Communications. 2016;380:357–360. DOI: 10.1016/j.optcom.2016.06.026.

5. Fibrich M, Jelínková H, Šulc J, Nejezchleb K, Škoda V. Visible cw laser emission of GaN-diode pumped Pr : YAlO3 crystal. Applied Physics B: Lasers and Optics. 2009;97(2):363. DOI: 10.1007/s00340-009-3679-5.

6. Reichert F, Marzahl D-T, Metz P, Fechner M, Hansen N-O, Huber G. Efficient laser operation of Pr³⁺, Mg²⁺ : SrAl₁₂O₁₀. Optics Letters. 2012;37(23):4889-4891. DOI: 10.1364/OL.37.004889.

7. Dorenbos P. The 5d level positions of the trivalent lanthanides in inorganic compounds. Journal of Luminescence. 2000;91(3/4): 155-176. DOI: 10.1016/S0022-2313(00)00229-5.

8. Malyukin YuV, Zhmurin PN, Borysov RS, Roth M, Leonyuk NI. Spectroscopic and luminescent characteristics of PrAl₃(BO₃)₄ crystals. Optics Communications. 2002;201(4/6):355-361. DOI: 10.1016/S0030-4018(01)01681-9.

9. Cavalli E, Leonyuk NI. Comparative investigation on the emission properties of $RAl_3(BO_3)_4$ (R = Pr, Eu, Tb, Dy, Tm, Yb) crystals with the huntite structure. Crystals. 2019;9(1):44. DOI: 10.3390/cryst9010044.

10. Bartl MH, Gatterer K, Cavalli E, Speghini A, Bettinelli M. Growth, optical spectroscopy and crystal field investigation of YAl₃(BO₃)₄ single crystals doped with tripositive praseodymium. Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy. 2001;57(10):1981-1990. DOI: 10.1016/S1386-1425(01)00484-X.

11. Boultif A, Louër D. Powder pattern indexing with the dichotomy method. Journal of Applied Crystallography. 2004;37(part 5): 724-731. DOI: 10.1107/S0021889804014876.

12. Shannon RD, Prewitt CT. Effective ionic radii in oxides and fluorides. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials. 1969;B25(part 5):925–946. DOI: 10.1107/S0567740869003220.

13. Kornienko AA, Kaminskii AA, Dunina EB. Dependence of the line strength of f - f transitions on the manifold energy. II. Analysis of Pr³⁺ in KPrP₄O₁₂. *Physica, Status, Solidi B: Basic Solid State Physics*. 1990;157(1):267–273. DOI: 10.1002/pssb.2221570127.

14. Jaque D, Ramirez MO, Bausá LE, García Solé J, Cavalli E, Speghini A, et al. $Nd^{3+} \rightarrow Yb^{3+}$ energy transfer in the $YAl_3(BO_3)_4$ nonlinear laser crystal. *Physical Review B: Covering Condensed Matter and Materials Physics*. 2003;68(24):035118. DOI: 10.1103/ PhysRevB.68.035118.

15. van Dijk JMF, Schuurmans MFH. On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4f – 4f transitions in rare-earth ions. *The Journal of Chemical Physics*. 1983;78(9):5317. DOI: 10.1063/1.445485. 16. de Mello Donega C, Meijernik A, Blasse G. Non-radiative relaxation processes of the Pr³⁺ ion. *Journal of Applied Spectroscopy*.

1995;62(4):664-670. DOI: 10.1007/BF02606515.

Получена 15.12.2021 / исправлена 14.01.2022 / принята 16.01.2022. Received 15.12.2021 / revised 14.01.2022 / accepted 16.01.2022.

Авторы:

Максим Петрович Демеш – кандидат физико-математических наук; старший научный сотрудник научно-исследовательского центра оптических материалов и технологий приборостроительного факультета.

Константин Николаевич Горбаченя – кандидат физикоматематических наук, доцент; старший научный сотрудник научно-исследовательского центра оптических материалов и технологий приборостроительного факультета.

Виктор Эдвардович Кисель - кандидат физико-математических наук, доцент; заведующий научно-исследовательским центром оптических материалов и технологий приборостроительного факультета.

Елена Александровна Волкова – кандидат химических наук, доцент; доцент кафедры кристаллографии и кристаллохимии геологического факультета.

Виктор Викторович Мальцев – доктор химических наук; старший научный сотрудник кафедры кристаллографии и кристаллохимии геологического факультета.

Елизавета Владимировна Копорулина – кандидат геологоминералогических наук, доцент; доцент кафедры кристаллографии и кристаллохимии геологического факультета.

Authors:

Maxim P. Demesh, PhD (physics and mathematics); senior researcher at the center for optical materials and technologies, faculty of instrumentation engineering.

maxim.demesh@bntu.by

Konstantin N. Gorbachenya, PhD (physics and mathematics), docent; senior researcher at the center for optical materials and technologies, faculty of instrumentation engineering.

gorby.konstantin@gmail.com

Viktor E. Kisel, PhD (physics and mathematics), docent; head of the center for optical materials and technologies, faculty of instrumentation engineering.

vekisel@bntu.by

Elena A. Volkova, PhD (chemistry), docent; associate professor at the department of crystallography and crystal chemistry, faculty of geology.

volkova@geol.msu.ru

Viktor V. Maltsev, doctor of science (chemistry); senior researcher at the department of crystallography and crystal chemistry, faculty of geology.

maltsev@geol.msu.ru

Elizaveta V. Koporulina, PhD (geology and mineralogy), docent; associate professor at the department of crystallography and crystal chemistry, faculty of geology. e koporulina@mail.ru

Алексей Александрович Корниенко – доктор физико-математических наук, профессор; профессор кафедры информационных систем и автоматизации производства факультета информационных технологий и робототехники.

Елена Брониславовна Дунина – кандидат физико-математических наук, доцент; доцент кафедры информационных систем и автоматизации производства факультета информационных технологий и робототехники.

Николай Васильевич Кулешов – доктор физико-математических наук, профессор; заведующий кафедрой лазерной техники и технологии приборостроительного факультета. *Alexey A. Kornienko*, doctor of science (physics and mathematics), full professor; professor at the department of information systems and production automation, faculty of information technology and robotics.

a_a_kornienko@mail.ru

Elena B. Dunina, PhD (physics and mathematics), docent; associate professor at the department of information systems and production automation, faculty of information technology and robotics. *l.dun@mail.ru*

Nikolay V. Kuleshov, doctor of science (physics and mathematics), full professor; head of the department of laser devices and technology, faculty of instrumentation engineering. *nkuleshov@bntu.by*