требителя и гигиеничность. Это обуславливает трудоемкость процесса проектирования и основательность при выборе составляющих пакета материалов для боевой одежды пожарных (далее – БОП). Используемый в настоящее время в качестве водонепроницаемого слоя в БОП материал обладает незначительной воздухопроницаемостью, что отрицательно сказывается на поддержании баланса температуры и влажности. Вполне логичной для повышения комфортности при носке БОП является необходимость замены водонепроницаемого слоя новым, отвечающего требованиям ТНПА и эргономических норм.

С целью решения проблемы в 2007-2008 гг. Учреждением «НИЦ Витебского ОУ МЧС Республики Беларусь» выполнена НИОКР «Разработать технологию получения водоупорных и воздухопроницаемых мембранных материалов для боевой одежды пожарных-спасателей». В рамках выполнения задания проведены исследования и обоснована структура текстильного материала, применяемого в качестве основы под нанесение полимерного покрытия; выбран оптимальный материал для нанесения мембранного полимерного покрытия. Осуществлен выбор и исследование материала полимерного покрытия. Разработаны методы образования микропористой структуры полимерного материала. Получены экспериментальные образцы полимерных плёнок. Проведены испытания полученных полимерных плёнок на воздухопроницаемость, водонепроницаемость, огнетермостойкие свойства, устойчивость к воздействию физико-механических нагрузок [1].

В результате выполнения НИОКР был получен опытный образец водоупорного воздухопроницаемого мембранного материала, соответствующий требованиям ТНПА. Применение полученного материала позволит уменьшить массу, снизить цену и повысить эргономические характеристики БОП, выпускаемой в нашей республике, тем самым улучшив условия работы пожарных.

Список использованных источников

1. Разработать технологию получения водоупорных и воздухопроницаемых мембранных материалов для боевой одежды пожарных-спасателей [Текст]: Этап №4; отчет о НИР (заключительный) / Учреждение «Научно - исследовательский центр Витебского областного управления МЧС Республики Беларусь»; рук. Дмитракович Н.М.; исполн.: Гречишников Е.А. [и др.] — Витебск, 2007. — 37 с. — Библиогр.: 36-37. — № ГР 20071779.

УДК 614.895

Дмитракович Н.М., Грудинский М.В. (НИЦ Витебского ОУ МЧС Республики Беларусь), проф. Ольшанский В.И. (УО «ВГТУ»)

ПОЛУЧЕНИЕ СПЕЦИАЛЬНОЙ ЗАЩИТНОЙ ОДЕЖДЫ ОТ ПОВЫШЕННЫХ ТЕПЛОВЫХ ВОЗДЕЙСТВИЙ

Проблема обеспечения безопасности труда пожарных имеет большое значение ввиду того, что при работе они подвергаются воздействию множества опасных и вредных факторов, включая химические, физико-механические и т.п. Для обеспечения необходимого уровня безопасности применяется большое количество мер и

средств, важное место среди которых отводится средствам индивидуальной защиты. В чрезвычайной ситуации именно они имеют первостепенное значение, а уровень безопасности спасателей непосредственно зависит от степени их совершенства.

С учетом направленности государственной политики в нашей стране на импортозамещение и создание новых технологий возник вопрос разработки специального защитного костюма, способного защитить от повышенных тепловых воздействий и отвечающего требованиям ТНПА.

Для решения этого вопроса совместно учреждением «НИЦ Витебского ОУ МЧС РБ», УО «ВГТУ» и ГНУ «ИТМО им. А.В. Лыкова» НАНБ в 2008 году выполнено задание «Разработать технологию производства специальной защитной одежды от повышенных тепловых воздействий» ГППИ «Снижение рисков чрезвычайных ситуаций».

В ходе выполнения задания решена проблема выбора оптимального пакета материалов для специальной защитной одежды легкого типа защиты. Проведены экспериментальные и теоретические исследования многослойных пакетов материалов специальной защитной одежды от повышенных тепловых воздействий (далее – СЗО ПТВ) по критериям воздействия открытого пламени, теплового потока и закона изменения температурного поля. Получен опытный образец защитного смотрового стекла. Подготовлена необходимая база для его мелкосерийного производства. На основании исследований теплофизизических свойств пакетов материалов и тканей для формирования рациональной конструкции СЗО ПТВ определен состав пакета материалов СЗО ПТВ.

В результате выполнения задания на базе РПУП «Униформ» был получен опытный образец ТОК-200-Л [1].

Список использованных источников

Обосновать оптимальный вариант конструкции специальной защитной одежды от повышенных тепловых воздействий с учетом возможных предложений от подразделений МЧС: отчет о НИР (заключ.) / Учр. «Научно-исследовательский центр Витебского областного управления МЧС Республики Беларусь»; рук. темы Ольшанский В.И. – Витебск, 2008. – 83 с. – № ГР 20081516.

УДК 621 924.001.63 : 004.4

студ. Воднев С.В., доц. Махаринский Ю.Т., асс. Фирсов А.С.

ОСОБЕННОСТИ МОДЕЛИРОВАНИЯ ШЛИФОВАЛЬНО-ЗАТОЧНОГО СТАНКА С ИСПОЛЬЗОВАНИЕМ ЭВМ

Шлифовально-заточной станок, как технологическая машина, представляет собой сложный комплекс различных устройств, позволяющих выполнять заточку инструментов различного профиля и шлифование винтовых канавок. Процесс проектирования станка трудоемок, многогранен и требует значительных затрат. При этом проектирование с использованием вычислительной техники накладывает дополнительные ограничения: