УДК 677.027.11

НЕПРЕРЫВНЫЙ КОНТРОЛЬ ВЛАЖНОСТИ ЛЕНТЫ

Доц. Ильющенко А.В., ст. преп. Куксевич В.Ф. Витебский государственный технологический университет г. Витебск, Республика Беларусь

В технологическом процессе изготовления шерстяной пряжи важным является начальный этап. Он осуществляется в следующей последовательности. Шерсть после крашения выходит из красильного бака 36 лентами, которые вначале проходят между отжимными валами, при этом удаляется излишняя влага. Затем ленты, каждая в отдельности, направляются в сушильногладильную камеру с определенной температурой, в которой высушиваются, и затем каждая из лент наматывается на свою опоку.

Важнейшим в этом процессе является влажность лент на выходе из сушильно-гладильной машины, определяющая сортность выходящих лент. Кондиционная влажность W_{κ} = 17 %. Первый сорт заключен в пределах $14 \div 17$ % и $17 \div 20$ %. Влажность от 10 % до 14 % и от 20 % до 22 % соответствует второму сорту. Большие отклонения влажности от кондиционной соответствуют браку, такие ленты идут на переработку.

Для контроля влажности полосы, состоящей из 36 шерстяных лент, был разработан СВЧ-влагомер. В нем применены дифференциальный метод измерения. Сигнал от СВЧ-генератора делится на две равные части и направляется в опорный и измерительный тракты. Сигнал опорного тракта регулируется потенциометром, сигнал измерительного тракта излучается передающей антенной и улавливается приемником. Между антеннами располагается полоса из шерстяных лент. Величина сигнала измерительного тракта зависит от влажности полосы. Сигналы трактов подаются на схему сравнения противополярно. Разностный сигнал регистрируется миллиамперметром с центральным расположением нуля. Шкала миллиамперметра разделена на секторы. Центральный сектор – зелёный, соответствует границам влажности первого сорта. Боковые сектора – коричневые, соответствуют границам влажности второго сорта. Выход стрелки за границы секторов указывает либо повышенную влажность, либо пересушенную ленту, т. е. брак.

Оператор в процессе работы постоянно контролирует режим влажности выходящей ленты. Это позволяет контролировать работу сушильно-гладильной машины и изменять при необходимости режим ее работы.

УДК 004.4

РАЗРАБОТКА ИНФОРМАЦИОННОЙ СИСТЕМЫ КОНТРОЛЯ ПОКАЗАТЕЛЕЙ СТУДЕНТА

К.т.н., доц. Казаков В.Е. Витебский государственный технологический университет г. Витебск, Республика Беларусь

Разработано клиентское приложение «Личный кабинет студента». Приложение интегрировано в микросервисную среду университетской информационной системы [1] и представляет собой web-приложение, работающее в web-браузере. Приложение будет размещено на сервере университета и будет доступно для студентов под личными аккаунтами не только из