дифференциальным управлением как более удобные для изготовления и представляющие более широкие возможности для исследований. Рассмотрены также различные варианты платформ для функционирования программного обеспечения и выбрана система Linux, способная функционировать на широком спектре промышленных микроконтроллеров.

УДК 621.283.681.51

Анализ влияния способа регулирования скорости на необходимую мощность двигателя

В.Ф. КУКСЕВИЧ, Ю.В. НОВИКОВ, Ю.В. ПОПОВ (Витебский государственный технологический университет, Беларусь)

Рабочие машины и механизмы, применяемые в текстильной и легкой промышленности и требующие регулирования скорости, весьма разнообразны. Однако возможности электроприводов в обеспечении различных законов изменений допустимого вращающего момента и мощности от скорости не столь широки, как требуют этого нагрузки. Применяемые в электроприводах способы регулирования скорости можно разделить на два вида: регулирование с постоянным моментом и регулирование с постоянной мощностью. К первому виду относятся, например, регулирование изменением напряжения на обмотке якоря двигателя постоянного тока, регулирование скорости асинхронного двигателя изменением частоты и напряжения при определенном их соотношении. Ко второму — регулирование изменением тока возбуждения двигателя постоянного тока, регулирование скорости асинхронного двигателя переключением числа пар полюсов, или изменением частоты и напряжения при определенном их соотношении.

Принципиально для каждого вида нагрузки можно применить оба вида регулирования скорости. Однако использование рационального сочетания характеристик нагрузки и регулируемого электропривода позволяет уменьшить необходимую мощность двигателя и исключить тепловые перегрузки во всем диапазоне регулирования.

Поясним вышесказанное на ряде простейших примеров. Наиболее наглядно это можно показать на примере электроприводов постоянного тока независимого возбуждения, у которого при регулировании с постоянным моментом скорость изменяется вниз от номинального значения, а при регулировании с постоянной мощностью — вверх от номинального значения.

На рис.1а линии M_c и P_c определяют момент сопротивления и мощность нагрузки (с постоянной мощностью в установившемся режиме), скорость которой должна регулироваться от ω_{\min} до ω_{\max} .

Если для данной нагрузки использовать привод с регулированием при постоянном моменте (линии допустимых статического вращающего момента и мощности для этого случая обозначены как M_1 , P_1), то номинальные скорость, вращающий момент и мощность двигателя должны быть примерно равны:

$$\omega_{n1} = \omega_{\max} \; , \qquad M_{n1} = M_{\max} \; , \qquad P_{n1} = M_{n1} \cdot \omega_{n1} = P_c \cdot D \; , \qquad D = \omega_{\max} / \omega_{\min} \; .$$

Таким образом, в этом случае установленная мощность двигателя в D раз превышает мощность нагрузки.

Применяя для данной нагрузки метод регулирования с постоянной мощностью (кривые M_2 , P_2), получаем

$$\omega_{u2} = \omega_{\min}$$
, $P_{u2} = P_c$, $M_{u2} = P_{u2}/\omega_{u2} = M_{c \max}$

Номинальная мощность в D раз меньше, чем при регулировании с постоянным моментом и обеспечивается полная загрузка двигателя по мощности во всем диапазоне регулирования.

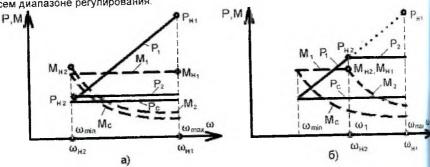


Рисунок 1 — Зависимость моментов и мощностей при однозонном (а) и двухзонном (б) регулировании

Если диапазон регулирования привода при постоянной мощности D_2 меньше необходимого D, то рационально использовать электропривод с двухзонным регулированием (рис.16), когда скорость вверх от номинального значения ϖ_{n2} регулируется при постоянной мощности (кривые M_2 , P_2) и вниз от номинального значения при постоянном моменте (кривые M_1 , P_1). Из рисунка наглядно видно, что двухзонное регулирование позволяет уменьшить необходимую мощность двигателя в D_2 раз по сравнению со случаем, если бы использовалось регулирование только при постоянном моменте, когда необходимая мощность равнялась P_{m1} .

Подобный анализ и в более сложных случаях позволяет более рационально выбрать метод регулирования и необходимую мощность двигателя. Естественно, что при окончательном выборе мощности двигателя необходимо учесть динамические нагрузки, возникающие во время переходных процессов.