ВЛИЯНИЕ УВЛАЖНЕНИЯ НА РЕЛАКСАЦИЮ УСИЛИЙ НАТУРАЛЬНОЙ КОЖИ ПРИ ДВУХОСНОМ РАСТЯЖЕНИИ

При производстве обуви заготовка верха обуви перед формованием подвергается влажно-тепловой обработке, с нанесением на лицевую поверхность кожи увлажнителя. При таком воздействии заготовка нагревается до температуры $65-90^{\circ}$ С и увлажняется, относительная влажность заготовки составляет 1-2%.

С целью исследования влияния увлажнения данным способом на релаксацию усилий при двухосном растяжении с различной величиной начальной деформации (10%, 15%, 20% и 25%) были исследованы образцы эластичной натуральной кожи «Мираж», толщиной 1,2-1,4 мм. Растяжение образцов производилось на автоматизированном комплексе для измерения и обработки результатов испытаний. Влажно-тепловая обработка осуществлялась на лабораторной установке контактного типа.

Проведенные исследования показали, что в диапазоне деформаций от 10% до 25% увеличение величины растяжения на 5 % увеличивает начальное усилие, необходимое для деформирования образцов в среднем в два раза. Увлажнение натуральной кожи данным способом способствует уменьшению начальных усилий при растяжении на 15 и 20 % примерно в два раза, а при растяжении на 10% и 25% не так значительно. Наибольшее снижение релаксируемых усилий достигается при деформировании образцов натуральной кожи на 20 %, общая доля релаксации для сухих образцов составляет 32 %, а для увлажненных термодиффузионно-контактным способом 38 %. Увеличение деформации на 5% в диапазоне от 10 до 20 % растяжения в среднем увеличивает общую долю релаксации на 4 %, как для сухих образцов, так и для увлажненных. При растяжении кожи на 25 %, общая доля релаксации начинает уменьшаться, следовательно, это говорит а том, что оптимальная величина деформации с точки зрения наибольшей величины падения усилий для натуральной кожи составляет 20%.

УΔК 685.34.013.2

Асп. Лавренова Ю. В., ст. преп. Козинец Д.Г., доц. Ковалев А.Л., проф. Горбачик В.Е.

АВТОМАТИЗАЦИЯ ПРОЦЕССА ПОЛУЧЕНИЯ И ОБРАБОТКИ ПЛАНТОГРАММ

Необходимую информацию для проектирования рациональной обуви дают антропометрические исследования. Нужная информация может быть получена различными способами, которые подразделяются на контактные, бесконтактные и комбинированные.

Контактные методы не дают достаточно точные данные. Их недостаток длительность, сложность обработки полученной информации и невозможность передачи данных непосредственно на ЭВМ. Целесообразнее использовать бесконтактные методы, позволяющие применять информационные и цифровые технологии широко развитые в последнее время.

Исхоля из этого, целью проведенного исследования явилась разработка методики и программного обеспечения получения с помощью цифровой фотокамеры и последующей обработки изображения плантарной поверхности стопы, позволяющих определить ее основные размерные характеристики.

Цифровая фотокамера позволяет получить и сохранить фотоизображения стопы без прямого участия компьютера. А затем быстро записать на ЭВМ в цифровом виде и в дальнейшем легко обработать.

Для обработки изображения стопы и расчета размерных характеристик используется специально разработанное программное обеспечение. Предложенная программа позволяет: просматривать изображение (с использованием функций масштабирования и панаромирования сдвиг изображения с помощью мышки); ориентировать и задавать масштаб изображения; выполнять поиск контура и отпечатка стопы, методом аппроксимации кубическим сплайном; выполнять расчет необходимых размерных характеристик стопы, используя построенные сплайны контуров; сохранять результаты на жестком диске: контура в виде массива координат точек, а рассчитанные характеристики в виде текстового отчета.

УДК 675.014/.017; 685.34,072

Студ. Барзаков Д.В., Бурко И.Н., Комиссарова С.В., доц. Загайгора К.А., доц. Максина З.Г.

ИССЛЕДОВАНИЕ СВОЙСТВ КОЖ ДЛЯ ВЕРХА ОБУВИ

Оценка технологической пригодности кож для верха обуви осуществляется на стадии входного контроля качества в основном при одноосном растяжении по ГОСТ 938.11-88 «Кожа. Метод испытания на растяжение». В литературе рассмотрено изменение свойств кож при различных температурных и влажностных воздействиях в основном при одноосном растяжении. В последние годы внедряется ГОСТ 29078-91 «Кожа. Метод испытания сферическим пуансоном», предусматривающий испытание кож при двухосном растяжении и поэтому важно знать как изменяются свойства кож при таком виде воздействия.

Для исследования были подобраны 32 кожи группы толщины 1,2-1,4 мм. Отбор проб осуществлялся по ГОСТ 938.0-88 и из каждой зоны получали данные по 3 испытаниям. Исследовались свойства воздушно-сухих образцов, при увлажнении в жидкой фазс (15 с окунанием с пролежкой 60 мин) и при контактном термодиффузионном увлажнении (t_{плиты} = 120 °C, t_{кожи} = 95 °C, время – 15 с). Экспериментальные данные показали, что при увлажнении существенно изменяются свойства кож. Увеличивается деформация кож при трещине лица на 10%-30%, причем при температурно-влажностном воздействии это увеличение больше на 3-5 %, чем при увлажнении в жидкой фазе. Значительно увеличиваются нагрузка при трешине лица и разрыве кожи. Наибольший интерес вызывает существенное уменьшение нагрузки при деформировании образца на 21% меридиального удлинения – удлинения, которое испытывает кожа в процессе формования заготовки на колодку. Так этот показатель уменьшается иногда в 2 раза. Можно предположить, что при удалении влаги в процессе различных технологических воздействий будут возникать внутренние напряжения, которые могут нарушить связь сетчатого и сосочкового слоя кожи. Поэтому после изготовления в обуви и на стадии начальной ее носки может возникнуть такой недопустимый дефект как отдушистость. Поэтому возникает необходимость поиска оптимальных температурно-влажностных воздействий на кожу для предотвращения появления дефекта отдушистости.

УΔΚ 678.01:539.6

Студ. Макеенко Н.Г., ст. преп. Матееев К.С.

ИССЛЕДОВАНИЕ СТРУКТУРНЫХ ВЗАИМОДЕЙСТВИЙ КЛЕЕВЫХ СОЕДИНЕНИЙ

При контроле готовой обуви на прочность клеевых соединений одним из наиболее важных показателей является промежуток времени, в течение, которого клеевое соединение приобретает определенную требуемую прочность.