V. 82, N 4

JOURNAL OF APPLIED SPECTROSCOPY

JULY — AUGUST 2015

СТРУКТУРА И СПЕКТРАЛЬНО-ЛЮМИНЕСЦЕНТНЫЕ СВОЙСТВА Се–Сг-СОДЕРЖАЩЕЙ КЕРАМИКИ НА ОСНОВЕ $Y_3Al_5O_{12}$

Г. Е. Малашкевич ^{1*}, Е. Н. Подденежный ², А. А. Бойко ², А. А. Корниенко ³,

Е. Б. Дунина ³, К. Н. Нищев ⁴, Т. Г. Хотченкова ¹, И. В. Прусова ¹,

П. П. Першукевич ¹, А. А. Суходола ¹, И. И. Сергеев ¹

УДК 535.37:621.315.612

(Поступила 21 ноября 2014)

C помощью коллоидно-химического метода синтезирована керамика на основе $Y_3Al_3O_{12}$: Ce^{3^+} , дополнительно легированная из газовой фазы хромом. Установлено, что ее спектр люминесценции состоит из широкой слабо разрешенной полосы с барицентром при $\lambda \approx 570$ нм, обусловленной ионами Ce^{3^+} , и узких полос в области 670-750 нм, обусловленных ионами Cr^{3^+} в $Y_3Al_5O_{12}$ и $YAlO_3$. Рассмотрены структура оптических центров Cr^{3^+} в обеих подсистемах, кинетические свойства их люминесценции и перенос между ними электронных возбуждений.

Ключевые слова: оксидная керамика, люминесценция, оптические центры, перенос электронных возбуждений.

The ceramics based on $Y_3Al_5O_{12}$: Ce^{3+} additionally doped with chromium from a gas phase is synthesized by means of a colloid-chemical method. It is established that its luminescence spectrum includes a broad weakly resolved band with the barycentre at $\lambda \approx 570$ nm caused by Ce^{3+} ions and narrow bands in the region of 670—750 nm caused by Cr^{3+} ions in $Y_3Al_5O_{12}$ and $YAlO_3$. A structure of Cr^{3+} optical centers in the both subsystems, kinetic properties of their luminescence and transfer between them of electron excitations are considered.

Keywords: oxide ceramics, luminescence, optical centers, transfer of electron excitations.

Введение. Появление высокоэффективных светодиодов на основе кристалла InGaN, излучающих при $\lambda \sim 450$ нм, стимулировало исследования по созданию люминофоров, позволяющих трансформировать это излучение в длинноволновую область с целью получения результирующего квазибелого света. Наиболее подходящими люминофорами для таких светодиодов считаются активированные ионами Ce^{3+} соединения со структурой граната, в частности иттрий-алюминиевого $(Y_3Al_5O_{12})$, люминесцирующие в широкой полосе при $\lambda \sim 530$ нм и уже нашедшие обширное применение [1, 2]. Трехподрешеточная структура таких соединений позволяет вводить в матрицу ионы практически всех групп элементов периодической таблицы и существенным образом влиять на положение энергетических состояний $4f^05d^{1}$ -оболочки такого активатора, определяющей спектральные характеристики люминесценции. В принципе, это позволяет подбором соответствующих добавок сместить барицентр полосы люминесценции Ce^{3+} в подобных люминофорах в красную сторону спектра таким образом, чтобы обеспечить "теплый" квазибелый свет двухкомпонентных (светодиод—люминофор) источников освещения [3]. Альтернативный вариант — дополнительное легирование таких люминофоров элементами, ионы которых характеризуются люминесценцией в красной области спектра. Наиболее простым и дешевым путем реализации этой цели представляется соактивация

STRUCTURE AND SPECTRAL-LUMINESCENT PROPERTIES OF Ce-Cr-CONTAINING CERAMICS BASED ON Y3Al5O12

¹ Институт физики им. Б. И. Степанова НАН Беларуси,

^{220072,} Минск, просп. Независимости, 68, Беларусь; e-mail: g.malashkevich@ifanbel.bas-net.by

² Гомельский государственный технический университет им. П. О. Сухого, Гомель, Беларусь

³ Витебский государственный технологический университет, Витебск, Беларусь

⁴ Мордовский государственный университет им. Н. П. Огарева, Саранск, Россия

G. E. Malashkevich ^{1*}, E. N. Poddenezhny ², A. A. Boiko ², A. A. Kornienko ³, E. B. Dunina ³, K. N. Nishchev ⁴, T. G. Khottchenkova ¹, I. V. Prusova ¹, P. P. Pershukevich ¹, A. A. Sukhodola ¹, and I. I. Sergeev ¹ (¹ B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 68 Nezavisimosti Prosp., Minsk, 220072, Belarus; ² P. O. Sukhoi Gomel State Technical University, Gomel, Belarus; ³ Vitebsk State Technological University, Vitebsk, Belarus; ⁴ N. P. Ogarev Mordovia State University, Saransk, Russia)

ионов Ce^{3+} ионами Cr^{3+} . В [4] сообщалось о достаточно эффективном переносе возбуждений от ионов Ce^{3+} на ионы Cr^{3+} в $Y_3Al_5O_{12}$:Се,Cr и увеличении доли красных квантов, излученных таким люминофором. Однако сведения о спектрально-люминесцентных свойствах соактивированной этими ионами керамики на основе $Y_3Al_5O_{12}$ в литературе отсутствуют. Между тем такая керамика характеризуется повышенной стабильностью интенсивности люминесценции при нагреве вплоть до 180 °C [5], что обеспечивает ей преимущество при использовании в мощных двухкомпонентных источниках освещения. Ликвидация указанного пробела — цель настоящей работы.

Материалы и методика эксперимента. Синтез экспериментальных образцов состоит из следующих стадий: смешивание в H_2O солей $Y(NO_3)_3$, $Al(NO_3)_3$ и $Ce(NO_3)_3$ в стехиометрическом соотношении; осаждение с использованием аммиака; отмывка осадка и сушка; введение спекающей добавки; сушка и прокаливание; размол и прессование; спекание. Легирование хромом осуществлялось из газовой фазы путем прокаливания полученных Се-содержащих порошков и спекания компактов в печи с хромитлантановыми нагревателями. Все реактивы имели квалификацию не хуже х.ч. Формирование фазы иттрий-алюминиевого граната контролировалось с помощью рентгеновского дифрактометра ДРОН-7 с использованием CuK_{α} -излучения ($\lambda = 1.54184$ Å). Отсутствие посторонних примесей и концентрация активаторов контролировались с помощью лазерного спектрального анализатора ЛСА-1.

Спектры люминесценции (СЛ) и ее возбуждения (СВЛ) регистрировались с помощью спектрофлуориметра СДЛ-2, исправлялись с учетом спектральной чувствительности системы регистрации и распределения спектральной плотности возбуждающего излучения и выражались в виде зависимости числа квантов на единичный интервал длин волн $dN/d\lambda$ от λ . Кинетика люминесценции и ее "мгновенные" спектры исследовались с помощью автоматизированного лазерного спектрометра при возбуждении второй гармоникой моноимпульсного перестраиваемого лазера на сапфире с титаном. Исследуемое излучение выделялось решеточным монохроматором МДР-23, а его регистрация осуществлялась фотоэлектрическим методом с помощью аналого-цифрового преобразователя и выводом данных на компьютер. При регистрации "мгновенных" спектров накопление сигнала осуществлялось в течение 5 мкс с различной длительностью задержки $t_{\rm зад}$ относительно возбуждающего импульса.

Результаты и их обсуждение. На рис. 1 приведены дифрактограммы прекурсора и полученной керамики с концентрациями [Ce] $\approx 5 \cdot 10^{19}$ см⁻³ и [Cr] $\leq 1 \cdot 10^{19}$ см⁻³ при различных температурах отжига $T_{\text{отж}}$, фотография и микрофотография скола керамического образца, а также используемого для прессования

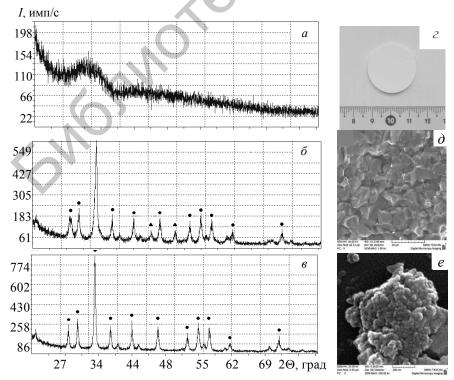


Рис. 1. Рентгеновские дифрактограммы Се–Сг-содержащей керамики (a—e), фотография керамики (z) и микрофотографии скола (d) и используемого для прессования порошка (e), $T_{\text{отж}}$ = 800 (a, e), 900 (d), 1450 °C (e—d); рефлексы $Y_3Al_5O_{12}$ (\bullet) и $YAlO_3$ (\bullet)

порошка. Видно, что полученный прекурсор имеет аморфную структуру (рис. 1, a), а его отжиг при 900 °C ведет к появлению кристалличности с заметно уширенными рефлексами (рис. 1, δ), что свидетельствует о наноразмерности составляющих частиц. В соответствии с данными каталога JCPDS-1996 (PDF 16-0219 и 33-0040) брэгговские рефлексы, отмеченные \bullet , по соотношению интенсивностей и положению соответствуют иттрий-алюминиевому гранату пространственной группы Ia3d кубической сингонии, а отмеченные \blacktriangle — перовскитоподобной фазе (YAlO₃). На дифрактограмме керамического образца (рис. 1, ϵ) эта фаза не проявляется. Видно также, что размер индивидуальных зерен используемого для прессования порошка составляет ~50 нм (рис. 1, ϵ), а керамического образца ~5—10 мкм (рис. 1, δ).

На рис. 2 приведены СЛ образцов Се- и Се–Сг-содержащей керамики. Видно, что однолегированный образец при возбуждении на $\lambda_{возб} = 460$ нм характеризуется широкой полосой с барицентром при $\lambda \approx 570$ нм (кривая I), в то время как для образца, легированного обоими активаторами, на длинноволновом "крыле" этой полосы появляется серия относительно узких спектральных полос с $\lambda_{max} = 694$ нм (кривая I). При $\lambda_{возб} = 400$ нм широкая полоса люминесценции практически исчезает и наблюдается существенное перераспределение относительной интенсивности узких полос (кривая I).

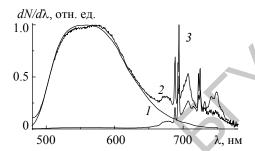


Рис. 2. Спектры люминесценции Ce- (1) и Ce-Cr-содержащей (2, 3) керамики при $\lambda_{\text{возб}} = 400$ (3) и 460 нм (1, 2); $\Delta\lambda_{\text{возб}} = 4$ нм, $\Delta\lambda_{\text{per}} = 0.6$ нм

На рис. З приведены СВЛ Се–Сг-содержащей керамики при длинах волн регистрации $\lambda_{\rm per}$, соответствующих максимумам наиболее интенсивных полос люминесценции. Видно, что спектр возбуждения широкополосной люминесценции содержит интенсивную полосу с $\lambda_{\rm max} \approx 460$ нм и слабую полосу с $\lambda_{\rm max} \approx 340$ нм (кривая I). Спектры узкополосной люминесценции можно условно разбить на две группы, характеризующиеся наибольшим подобием в видимой области спектра. В первую входят спектры, полученные при $\lambda_{\rm per} = 688$ и 707 нм, во вторую — при $\lambda_{\rm per} = 694$, 725 и 750 нм, причем спектры последней группы существенно различаются в УФ области.

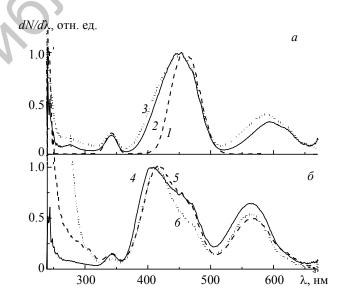


Рис. 3. Спектры возбуждения люминесценции Се–Сr-содержащей керамики при $\lambda_{\text{per}} = 600 \ (I), 688 \ (2), 707 \ (3), 694 \ (4), 725 \ (5)$ и 750 нм $(6), \Delta\lambda_{\text{per}} = \Delta\lambda_{\text{воз}6} = 2$ нм

На рис. 4 представлены кинетика затухания узкополосной люминесценции Се–Сг-содержащей керамики и ее мгновенные СЛ. Кинетика снята с задержкой $t_{\rm зад}=200$ нс от момента возбуждения для устранения наложения люминесценции ионов ${\rm Ce}^{3+}$, характеризующейся средней длительностью затухания $\tau\approx 60$ нс [3]. Как видно, при $\lambda_{\rm per}=694$ нм затухание люминесценции осуществляется по закону, близкому к экспоненциальному (рис. 4, a, кривая I) с $\tau\approx 3.4$ мс. При $\lambda_{\rm per}=725$ нм закон затухания явно неэкспоненциален и кинетическую кривую (кривая 2) можно разложить на две экспоненты — начальную с постоянной затухания $\tau\approx 3$ мс и дальнюю с $\tau\approx 36$ мс. Видно также, что мгновенные спектры, снятые с $t_{\rm зад}=1$ и 25 мс (см. рис. 4, δ), радикально различаются.

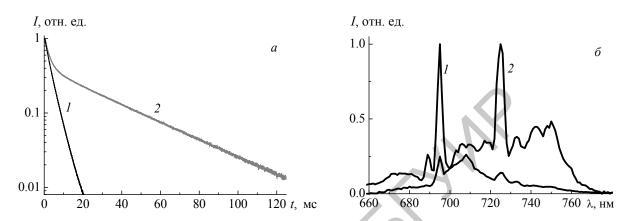


Рис. 4. Кинетика затухания (*a*) и мгновенные спектры люминесценции (*б*) Се–Сг-содержащей керамики, $\lambda_{\text{воз}6} = 410$ нм: $a - \lambda_{\text{per}} = 694$ (*I*) и 725 нм (*2*), $t_{\text{зад}} = 200$ нс (*I*, *2*); $\delta - t_{\text{зад}} = 1$ (*I*) и 25 мс (*2*)

Радикальное различие мгновенных СЛ ионов Cr^{3+} позволяет сделать вывод о реализации этих ионов в синтезированной керамике в двух различных подсистемах. В пользу такого вывода свидетельствует и анализ наблюдаемого штарковского расщепления термов Cr^{3+} . Действительно, полагая, что эти ионы замещают ионы Al^{3+} в октаэдрических позициях с тригональным искажением кубической локальной симметрией, для описания экспериментальных расщеплений можно использовать гамильтониан в приближении симметрии C_{3V} :

$$H_{CF} = B_0^2 C_0^2 + B_0^4 C_0^4 + B_3^4 \left(C_3^4 - C_{-3}^4 \right), \tag{1}$$

где $B_q^{\ k}$ — параметры кристаллического поля; $C_q^{\ k}$ — сферический тензор, действующий на угловые переменные d-электронов.

Традиционно действие кристаллического поля в кубических центрах описывается параметром 10Dq и параметрами тригонального искажения ν и ν' . Через эти параметры можно выразить параметры кристаллического поля [6]:

$$B_0^2 = \frac{\sqrt{2}}{2} \left(\sqrt{2} v - 4 v' \right), \tag{2}$$

$$B_0^4 = -\frac{\sqrt{2}}{30} \left(21\sqrt{2} \cdot 10Dq - 20\sqrt{2}v - 60v' \right),\tag{3}$$

$$B_3^4 = -\frac{\sqrt{70}}{30} \left(6 \cdot 10Dq + 2\nu + 3\sqrt{2}\nu' \right),\tag{4}$$

Энергия уровня 4T_2 равна 10Dq, а его расщепление в тригональном поле v/2. Энергия 4T_1 -уровня зависит от 10Dq и параметра Рака B, а его расщепление приблизительно равно v/2 + v'. Кроме того, энергии низкорасположенных спиновых дублетов сильно зависят от v и v'.

Разлагая приведенные спектры по лоренцевым контурам, получаем экспериментальные значения энергий штарковских компонент, приведенные в табл. 1. Здесь же даны рассчитанные значения параметров в формулах (2)—(4) и энергий штарковских компонент. Анализ табулированных результатов позволяет сделать следующие выводы: значения 10Dq близки к наблюдаемым для ионов Cr^{3+} в октаэдрических позициях, что подтверждает правильность исходной посылки; параметры Рака B сильно отличаются, поэтому можно предположить, что ионы Cr^{3+} , характеризующиеся первой и второй группами спектров, находятся в разных фазах матрицы; значение параметров v, v' свидетельствуют о разном тригональном искажении локальной симметрии оптических центров в этих фазах.

По литературным данным типичные длительности затухания люминесценции при комнатной температуре для ионов Cr^{3+} в низколегированных поликристаллах $Y_3Al_5O_{12}$ и монокристалле $YAlO_3$ составляют \approx 4 мс [7] и \approx 31—35 мс [8]. Поэтому первую группу узких люминесцентных полос с максимумом 694 нм можно отнести к ионам Cr^{3+} , замещающим ионы Y^{3+} в иттрий-алюминиевом гранате, а группу полос с максимумом 725 нм — в алюминате иттрия. Данное соотнесение подтверждается удовлетворительным совпадением приведенных СЛ и СВЛ с литературными данными для $Y_3Al_5O_{12}$: Cr^{3+} [4, 7] и $YAlO_3$: Cr^{3+} [8]. Указанное при описании рис. 4 небольшое различие скоростей высвечивания при $\lambda_{per} = 694$ нм и на начальной стадии этого процесса при $\lambda_{per} = 725$ нм позволяет полагать, что данная стадия обусловлена люминесценцией $Y_3Al_5O_{12}$: Cr^{3+} из-за наложения ее спектра на область регистрации (рис. 4, δ). В таком случае затухание люминесценции ${\rm Cr}^{3+}$ в YAlO₃ осуществляется по экспоненциальному закону с $\tau \approx 36$ мс. Небольшое отклонение от экспоненциальности распада метастабильного состояния ионов Cr^{3+} в $Y_3Al_5O_{12}$ и экспоненциальный распад в YAlO₃ позволяют сделать вывод о достаточно высоком квантовом выходе люминесценции Cr3+. Действительно, с учетом низкой концентрации этих ионов и малых сил осцилляторов взаимодействующих переходов концентрационное тушение люминесценции в каждой подсистеме, а также реализация кинетической стадии тушения, приводящей к экспоненциализации процесса затухания люминесценции, маловероятны. Сопоставимые интенсивности люминесценции Cr3+ в Y3Al5O12 и YAlO3 (рис. 2, кривые 2 и 3) в отсутствие на дифрактограмме явных рефлексов алюмината иттрия (рис. 1, 6) можно объяснить относительно эффективной передачей возбуждений от ионов Cr3+ в первой подсистеме на одноименные ионы во второй из-за малой энергетической щели (≈320 см⁻¹) между метастабильными состояниями ^{2}E в обеих подсистемах (табл. 1). Судя по величине вклада полосы возбуждения люминесценции ионов Ce^{3+} , расположенной при 460 нм, в СВЛ ионов Cr^{3+} в $Y_3Al_5O_{12}$ (рис. 3, a), имеет место достаточно эффективная сенсибилизация люминесценции Cr3+ ионами Ce3+ В то же время незначительная интенсивность этой полосы в СВЛ ионов Cr^{3+} при $\lambda_{per} = 750$ нм (рис. 3, δ , кривая δ), когда перекрытие полос люминесценции Cr^{3+} в YAlO₃ и Y₃Al₅O₁₂ минимально (рис. 4, б, кривые 1 и 2), позволяет сделать заключение о гораздо меньшей эффективности переноса возбуждений от ионов Ce^{3+} в $Y_3Al_5O_{12}$ на ионы Cr^{3+} в $YAlO_3$.

Т а б л и ц а 1. Параметры кристаллического поля и спектроскопические характеристики ионов Cr^{3+}

	Первая группа спектров			Вторая группа спектров		
Полоса	A = 0, B = 625.0, C = 3100.0, 10Dq = 16500.0,			A = 0, B = 535.0, C = 3350.0, 10Dq = 16300.0,		
	v = -1100.0, v' = -440.0			v = 1000.0, v' = 600.0		
	$B_0^2 = 144.6,$	$B_0^4 = -25811.$	$0, B_3^4 = -26476.0$	$B_0^2 = -697.0$	$B_0^4 = -19790$	$.0, B_3^{\ 4} = -28543.0$
	Симметрия	Теория, см ⁻¹	Эксперимент, см ⁻¹	_	T еория, c м $^{-1}$	Эксперимент, см-1
1	${}^{4}A_{2}$	0	0	${}^{4}A_{2}$	0	0
2	$^{2}E(^{2}E)$	14199	14124	${}^{2}E({}^{2}E)$	13594	13800
3	${}^{2}E({}^{2}T_{1})$	14350	14400	${}^{2}A_{2}({}^{2}T_{1})$	14404	14400
4	$^{2}A_{2}(^{2}T_{1})$	14593	14500	${}^{2}E({}^{2}T_{1})$	14629	
5	${}^{4}A_{1}({}^{4}T_{2})$	16152	16109	${}^{4}E({}^{4}T_{2})$	16095	16310
6	${}^{4}E({}^{4}T_{2})$	16643	16975	${}^{4}A_{1}({}^{4}T_{2})$	16665	17228
7	$^{2}E(^{2}T_{2})$	17017	_	$^{2}E(^{2}T_{2})$	18267	
8	$^{2}A_{1}(^{2}T_{2})$	20682	_	$^{2}A_{1}(^{2}T_{2})$	20627	
9	${}^{4}A_{2}({}^{4}T_{1})$	22086	22179	${}^{4}E({}^{4}T_{1})$	21585	21092
10	${}^{4}E({}^{4}T_{1})$	23276	23490	${}^{4}A_{2}({}^{4}T_{1})$	22661	22609
11	${}^{2}A_{1}({}^{2}A_{1})$	28298	_	${}^{2}A_{1}({}^{2}A_{1})$	28503	
12	$^2E(^2T_2)$	29993		$^2E(^2T_2)$	29857	

Заключение. Синтезированная керамика включает в себя $Y_3Al_5O_{12}$ пространственной группы Ia3d кубической сингонии и незначительную примесь орторомбического $YAlO_3$. При небольших концентрациях ионов Ce^{3+} и Cr^{3+} (≈5 · 10^{19} и ≤1 · 10^{19} см⁻³) она характеризуется заметной сенсибилизацией люминесценции вторых ионов первыми в $Y_3Al_5O_{12}$ и достаточно эффективной передачей возбуждений от ионов Cr^{3+} в $Y_3Al_5O_{12}$ одноименным ионам в $YAlO_3$, характеризующимся отсутствием заметного тушения люминесценции. Это позволяет рассматривать соактивацию керамики на основе иттрий-алюминиевого граната ионами Ce^{3+} и Cr^{3+} как один из возможных путей существенного увеличения доли красных квантов в спектре ее люминесценции при возбуждении излучением светодиодов на основе кристалла InGaN.

- [1] http://www.leds.ru/anl11.htm
- [2] М. Л. Бадгутдинов, Е. В. Коробов, Ф. А. Лукьянов, А. Э. Юнович, Л. М. Коган, Н. А. Гальчина, И. Т. Рассохин, Н. П. Сощин. ФТП, 40, № 6 (2006) 758—763
- [3] С. А. Самойленко, Е. В. Третьяк, Г. П. Шевченко, С. Е Кичанов, Д. П. Козленко, Г. Е. Малашкевич, А. П. Ступак, Б. Н. Савенко. Журн. прикл. спектр., 81, № 6 (2014) 958—965 [S. A. Samoylenko, E. V. Tret'yak, G. P. Shevchenko, S. E. Kichanov, D. P. Kozlenko, G. E. Malashkevich, A. P. Stupak, B. N. Savenko. JAS, 81 (2014) 1048—1055]
- [4] W. Wang, J. Tang, S. T. Hsu, J. Wang, B. P. Sullivan. Chem. Phys. Let., 457 (2008) 103—105
- [5] G. Malashkevich, G. Semkova, A. Danilchyk, A. Vainilovich, E. Lutsenko, E. Poddenezhny, A. Boiko. Proc. 14th Int. Workshop on Inorganic and Organic Electroluminescence & 2008 Int. Conf. Science and Technology of Emissive Displays and Lighting, Rome, Italy, 9—12 September 2008, Rome, ENEA (2008) 235—236
- [6] Д. Т. Свиридов, Р. К. Свиридова, Ю. Ф. Смирнов. Оптические спектры ионов переходных металлов в кристаллах, Москва, Наука (1976) 38—48
- [7] P. Guchowski, R. Pazik, D. Hreniak, W. Strek. J. Lumin., 129 (2009) 548—553

[8] M. Sugiyama, T. Yanagida, D. Totsuka, Y. Yokota, Y. Futami, Y. Fujimoto, A. Yoshikawa. J. Crystal Growth, 362 (2013) 157—161