Effect of Annealing Temperature on the Structural Reorganization of Eu ${ }^{3+}$ Optical Centers in $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{Eu}_{2} \mathrm{O}_{3}-\mathrm{BiOF}$ Gel Films

G. E. Malashkevich ${ }^{a}$, A. A. Kornienko ${ }^{b}$, E. B. Dunina ${ }^{b}$, I. V. Prusova ${ }^{a}$, G. P. Shevchenko ${ }^{a}$, and Yu. V. Bokshits ${ }^{c}$
${ }^{a}$ Institute of Molecular and Atomic Physics, National Academy of Sciences of Belarus, Minsk, 220072 Belarus
${ }^{b}$ Vitebsk State Technological University, Vitebsk, 210035 Belarus
${ }^{c}$ Research Institute of Physicochemical Problems, Belarussian State University, Minsk, 220080 Belarus Received October 25, 2006

Abstract

The dependence of the structural reorganization of Eu^{3+} optical centers in $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{Eu}_{2} \mathrm{O}_{3}-\mathrm{BiOF}$ films on the annealing temperature has been investigated. It is shown by the methods of crystal field theory and computer simulation that the increase in the annealing temperature from 700 to $1100^{\circ} \mathrm{C}$ leads to removal of bismuth from Eu-O-Bi complex centers with the $C_{3 V}$ symmetry in the $\mathrm{Al}_{2} \mathrm{O}_{3}$ structure and the change in symmetry from D_{3} to O_{h} for a large fraction of EuAlO_{3} centers.

PACS numbers: 78.55. Qr , 61.50.Ah, 81.20.Fw
DOI: 10.1134/S0030400X0706015X

INTRODUCTION

The formation of $\mathrm{Eu}-\mathrm{O}-\mathrm{Bi}$ chain centers in $\mathrm{Al}_{2} \mathrm{O}_{3}-$ $\mathrm{Eu}_{2} \mathrm{O}_{3}-\mathrm{BiOF}$ gel films, which show a record peak luminescence intensity due to the ${ }^{5} D_{0} \longrightarrow{ }^{7} F_{4}$ transition ($\lambda \approx 700 \mathrm{~nm}$) in Eu^{3+} ions, has recently been reported [1]. Such centers are of interest both for studying the spectroscopic potential of Eu^{3+} ions and for a number of practical applications. In particular, light-converting coatings for silicon solar cells require increasing the fraction of photons emitted in the range of the maximum spectral sensitivity of these coatings ($\sim 700-$ 900 nm). Therefore, further investigation of such centers is an urgent problem. Since it is fairly difficult to determine their nature in thin glasslike films by X-ray diffraction methods (if for no other reason than the absence of sufficiently large single-crystal regions), methods of optical spectroscopy can be more sensitive and informative [2]. In this paper, we report the results of studying the structural reorganization of $\mathrm{Eu}-\mathrm{O}-\mathrm{Bi}$ chain centers in such films caused by an increase in the annealing temperature. The study was performed using the methods of crystal field theory and computer simulation.

EXPERIMENTAL

Films were formed using layer-by-layer deposition by centrifugation of multicomponent sols onto a quartz substrate, heating each layer at $150^{\circ} \mathrm{C}$ for 10 min . The initial $\mathrm{Al}_{2} \mathrm{O}_{3}$ sol was prepared using deposition of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ by ammonia with subsequent washing until
the beginning of spontaneous peptization. $\mathrm{An} \mathrm{Eu}\left(\mathrm{NO}_{3}\right)_{3}$ solution and a BiOF weight were added to the initial sol with intense stirring and then the mixture was subjected to ultrasonic treatment in order to obtain a homogeneous suspension. The films thus fabricated were annealed at different temperatures T_{an}.

Luminescence spectra were recorded with an SDL2 spectrofluorimeter, corrected taking into account the spectral sensitivity of the recording system, normalized by reducing the peak spectral intensity to unity, and represented as a dependence of the number of photons per unit wavelength range ($d N / d \lambda$) on λ. Decomposition of complex spectral bands (recalculated in the number of photons per unit frequency range and frequency coordinates) into individual components modeled by Lorentzian profiles and determination of their barycenters were performed using the well-known methods of computer processing. The intensity I of an individual component was determined as the area under the corresponding profile. The crystal field parameters were found from splittings and intensities of individual components in the experimental spectra.

RESULTS AND DISCUSSION

The figure shows the luminescence spectra of a $45 \mathrm{Al}_{2} \mathrm{O}_{3}-30 \mathrm{Eu}_{2} \mathrm{O}_{3}-25 \mathrm{BiOF}$ ($\mathrm{mol} \%$) film annealed at different temperatures; the excitation wavelength $\lambda_{\text {exc }}=$ 280 nm . It can be seen that the peak luminescence intensity in the ${ }^{5} D_{0} \longrightarrow{ }^{7} F_{4}$ band at $T_{\text {an }}=700^{\circ} \mathrm{C}$ (curve 1) multiply exceeds the corresponding intensi-
$d N / d \lambda$, rel. units

Luminescence spectra of the $45 \mathrm{Al}_{2} \mathrm{O}_{3}-30 \mathrm{Eu}_{2} \mathrm{O}_{3}-25 \mathrm{BiOF}$ ($\mathrm{mol} \%$) film annealed at $T_{\mathrm{an}}=$ (1) 700 , (2) 900 , (3) 1000, and (4) $1100^{\circ} \mathrm{C} . \lambda_{\text {exc }}=280 \mathrm{~nm}$; the half-widths of the excitation and detection bands are 4.0 and 1.5 nm , respectively.
ties for other bands. With an increase in $T_{\text {an }}$ to 900 and $1000^{\circ} \mathrm{C}$ (curves 2 and 3 , respectively), the fraction of photons emitted in the ${ }^{5} D_{0} \longrightarrow{ }^{7} F_{1}(\lambda \sim 590 \mathrm{~nm})$ and ${ }^{5} D_{0} \longrightarrow{ }^{7} F_{2}(\lambda \sim 615 \mathrm{~nm})$ transitions significantly increases. At $T_{\text {an }}=1100^{\circ} \mathrm{C}$, the shape of the spectral bands radically changes. Such a character of changes in the luminescence spectra with a change in T_{an}, indicating structural reorganization of Eu^{3+} optical centers, is
retained with the change in the film composition within $(40-60) \mathrm{Al}_{2} \mathrm{O}_{3}-(20-40) \mathrm{Eu}_{2} \mathrm{O}_{3}-(10-30) \mathrm{BiOF}$ and the change in $\lambda_{\text {exc }}$ from 250 to 395 nm . The decrease in the Al content to $10 \mathrm{~mol} \%$ due to the increase in the BiOF content under similar annealing conditions leads to a significant change in the shape of the spectral bands; in this case, the integrated and peak intensities of the ${ }^{5} D_{0}$ $\longrightarrow{ }^{7} F_{2}$ band significantly exceed the intensities of other ${ }^{5} D_{0} \longrightarrow{ }^{7} F_{j}$ bands. However, even at $1 \mathrm{~mol} \%$ $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{Eu}^{3+}$ optical centers with the spectra similar (in the first-order approximation) to curves $1-3$ can be formed; however, the optical quality of such films is low.

Due to the absence of a clear structure of spectral bands at $\lambda>640 \mathrm{~nm}$, we restricted ourselves to the ${ }^{5} D_{0} \longrightarrow{ }^{7} F_{1},{ }^{7} F_{2}$ and ${ }^{5} D_{0} \longrightarrow{ }^{7} F_{0}$ transitions ($\lambda \sim$ 570 nm) in determination of the symmetry of Eu^{3+} optical centers. The Stark level energies E and the relative intensities of the transitions from the ${ }^{5} D_{0}$ multiplet of Eu^{3+} ions in a $45 \mathrm{Al}_{2} \mathrm{O}_{3}-25 \mathrm{BiOF}-30 \mathrm{Eu}_{2} \mathrm{O}_{3}$ film at different $T_{\text {an }}$, obtained using the calculated profiles, are listed in Table 1. According to the theory of groups [4], the experimentally observed splitting of the ${ }^{7} F_{1}$ and ${ }^{7} F_{2}$ multiplets into two and three Stark components, respectively, should occur in trigonal fields. Europium oxocomplexes with a coordination number of 6 and approximate local symmetry $C_{3 V}$ (as in $\mathrm{Al}_{2} \mathrm{O}_{3}$) or a coordination number of 12 and approximate symmetry D_{3} (as in LaAlO_{3}) satisfy this condition. Therefore, the data in the literature on E for $\mathrm{Al}_{2} \mathrm{O}_{3}$ and LaAlO_{3} crystals are also listed in Table 1 for comparison.

Table 1. Experimental values of the Stark level energies and the relative intensities of the transitions from the ${ }^{5} D_{0}$ state of Eu^{3+} ions

$$	Symmetry	Gel film at $T_{\text {an }},{ }^{\circ} \mathrm{C}$								$\begin{gathered} \underset{[2]}{\mathrm{Al}_{2} \mathrm{O}_{3}: \mathrm{Eu}^{3+}} \\ E, \mathrm{~cm}^{-1} \end{gathered}$	$\begin{array}{\|c} \frac{\mathrm{LaAlO}_{3}: \mathrm{Eu}^{3+}}{[3]} \\ \hline E, \mathrm{~cm}^{-1} \end{array}$
		700		900		1000		1100			
	$C_{3 V} / D_{3}$	$E, \mathrm{~cm}^{-1}$	I, rel. un.								
${ }^{7} F_{0}$	A_{1}	0	0.15	0	0.17	0	0.05	0	0.50	0	0
${ }^{7} F_{1}$	A_{2}	256	1.30	230	1.10	241	0.75	265	0.18	202	314
	E							378	1.87		380
		480	2.61	456	2.57	438	2.09	544	3.06	458	
${ }^{7} F_{2}$	A_{1} / E							797	1.73		
			0.94	895	0.87	901	2.13			898	
		945						942	2.30		959
	E / A_{1}			967	2.85	978	2.21			943	
		1011	1.34					1006	5.57		1004
	E							1086	1.40		1069
		1169	4.09	1174	3.62	1214	2.13	1294	1.54	1268	
								1452	4.18		

Table 2. Crystal field parameters and strengths calculated from the data of Table 1

Crystal field parameters and strengths	Gel film at $T_{\mathrm{an}},{ }^{\circ} \mathrm{C}$						$\begin{gathered} \mathrm{Al}_{2} \mathrm{O}_{3}: \mathrm{Eu}^{3+} \\ {[2]} \end{gathered}$	$\underset{[3]}{\mathrm{LaAlO}_{3}: \mathrm{Eu}^{3+}}$
	700		900		1100			
	symmetry							
	$C_{3 V}$	D_{3}						
B_{0}^{2}	-850.7	-738.7	-866.7	-727.8	-753.8	-616.6	-965	-214
B_{0}^{4}	-420.1	711.8	-405.2	989.4	-392.1	1191.9	1	451
B_{3}^{4}	1140.0	664.6	1514.2	873.8	1753.2	983.1	1914	314
S	476	363	582	438	637	473	707	163

It was shown in [1] that at $T_{\mathrm{an}}=700^{\circ} \mathrm{C}$ the diffraction patterns of $50 \mathrm{Al}_{2} \mathrm{O}_{3}-40 \mathrm{Eu}_{2} \mathrm{O}_{3}-10 \mathrm{BiOF}$ powders contain only reflections corresponding to the EuAlO_{3} phase; however, they do not manifest themselves in the luminescence spectrum due to effective excitation transfer to $\mathrm{Eu}-\mathrm{O}-\mathrm{Bi}$ chain centers. It was also suggested in [1] that such centers are formed in the $\mathrm{Al}_{2} \mathrm{O}_{3}$ structure and, according to the calculation performed, such a center should contain a Bi^{3+} ion in an empty octahedral position on the C_{3} symmetry axis at a distance of $\sim 2 \AA$ from the Eu^{3+} ion. It was also found in [1] that, at an insignificant increase in $T_{\text {an }}$ (to $800^{\circ} \mathrm{C}$), the $\mathrm{Bi}_{2} \mathrm{O}_{3}$ phase is also formed in powders. Taking into account the proximity of the ionic radii of Bi^{3+} and Eu^{3+} (1.02 and $0.947 \AA$, respectively) [5], one cannot exclude the possibility of formation of similar centers in the $\mathrm{Bi}_{2} \mathrm{O}_{3}$ structure. However, our search for Eu^{3+} optical centers (which would induce a trigonal field) at partial substitution of oxygen atoms with fluorine in the $\mathrm{Bi}_{2} \mathrm{O}_{3}$ structure [6] did not reveal any such centers; they were not found either in the bismuth oxyfluoride structure, described in [7]. On the basis of these data, we excluded from analysis the scenario of substitution of Bi^{3+} ions with Eu^{3+} ions in $\mathrm{Bi}_{2} \mathrm{O}_{3}$ and BiOF crystallites and considered only incorporation of Eu^{3+} and Bi^{3+} ions into $\mathrm{Al}_{2} \mathrm{O}_{3}$ or EuAlO_{3}.

Comparison of the energies of Stark levels of a gel film with the energies of the corresponding levels of $\mathrm{Al}_{2} \mathrm{O}_{3}: \mathrm{Eu}^{3+}$ or $\mathrm{LaAlO}_{3}: \mathrm{Eu}^{3+}$ does not allow an unambiguous choice between the $C_{3 V}$ and D_{3} symmetries. Therefore, to refine the symmetry of optical centers, we will determine the crystal field parameters. In trigonal fields, the crystal field Hamiltonian has the form [4]

$$
\begin{gather*}
H_{C F}=B_{0}^{2} C_{0}^{2}+B_{3}^{4}\left(C_{3}^{4}-C_{-3}^{4}\right) \tag{1}\\
+B_{0}^{6} C_{0}^{6}+B_{3}^{6}\left(C_{3}^{6}-C_{-3}^{6}\right)+B_{6}^{6}\left(C_{6}^{6}+C_{-6}^{6}\right),
\end{gather*}
$$

where B_{q}^{k} are the crystal field parameters and C_{q}^{k} is a spherical tensor of rank k. Splitting of the ${ }^{7} F_{1}$ and ${ }^{7} F_{2}$
multiplets is set by the parameters B_{0}^{2}, B_{0}^{4}, and B_{3}^{4} [8] of Hamiltonian (1). The $J-J$ mixing effects significantly influence the splitting of multiplets and, therefore, the crystal field parameters. Hence, diagonalization of the matrix of Hamiltonian (1) was performed in the basis of the states of the multiplets under consideration.

The crystal field parameters calculated by the leastsquares method according to the data of Table 1 in the approximation of the $C_{3 V}$ and D_{3} symmetries, as well as the values of these parameters for LaAlO_{3} and $\mathrm{Al}_{2} \mathrm{O}_{3}$ crystals, are listed in Table 2. This table contains also the values of the crystal field strength S calculated from the formula [9, 10]

$$
\begin{equation*}
S=\sqrt{1 / 3 \sum_{k=2,4,6} 1 /(2 k+1)\left[\left(B_{0}^{k}\right)^{2}+2 \sum_{q>0}\left|B_{q}^{k}\right|^{2}\right]} \tag{2}
\end{equation*}
$$

Since it is possible to determine only the parameters of tensors of ranks two and four in the case under consideration, instead of formula (2), we used the following expression to calculate the crystal field strength:

$$
S=\sqrt{1 / 2 \sum_{k=2,4} 1 /(2 k+1)\left[\left(B_{0}^{k}\right)^{2}+2 \sum_{q>0}\left|B_{q}^{k}\right|^{2}\right]} .
$$

It can be seen in Table 2 that the crystal field strength of gel films ranges from 476 to $637 \mathrm{~cm}^{-1}$ and from 363 to $473 \mathrm{~cm}^{-1}$ on the assumption of the $C_{3 V}$ and D_{3} symmetries, respectively. The different-symmetry values $S=$ 476 and $363 \mathrm{~cm}^{-1}$ for the gel films at $T_{\text {an }}=700^{\circ} \mathrm{C}$ can be assigned to $S=707 \mathrm{~cm}^{-1}$ in $\mathrm{Al}_{2} \mathrm{O}_{3}\left(C_{3 V}\right.$ symmetry) and $S=163 \mathrm{~cm}^{-1}$ in $\mathrm{LaAlO}_{3}\left(D_{3}\right.$ symmetry). However, with an increase in T_{an}, S approaches the values characteristic of the $\mathrm{Al}_{2} \mathrm{O}_{3}$ structure. For example, the value $S=637 \mathrm{~cm}^{-1}$ at $T_{\mathrm{an}}=1000^{\circ} \mathrm{C}$ unambiguously indicates the presence of such centers.

These conclusions are confirmed by the analysis of the relative intensities of luminescence transitions from

Table 3. Experimental values of the Stark level energies and the relative intensities of the ${ }^{5} D_{0} \longrightarrow{ }^{7} F_{0},{ }^{7} F_{1}$ transitions

${ }^{2 S+1} L_{J}$	Symmetry	Gel film at $T_{\text {an }}=900^{\circ} \mathrm{C}$	
		$E, \mathrm{~cm}^{-1}$	I, rel. un.
${ }^{7} F_{0}$	A_{1}	0	0.55
${ }^{7} F_{1}$	$A_{2}\left(C_{3 V}\right)$	229	1.10
	$B_{2}\left(O_{h}\right)$	380	0.28
	$E\left(C_{3 V}\right)$	462	2.23

the ${ }^{5} D_{0}$ multiplet to the Stark components A_{2} and E of the ${ }^{7} F_{1}$ multiplet. The ${ }^{5} D_{0} \longrightarrow{ }^{7} F_{1}$ transition is of mag-netic-dipole type. The degeneracy of the E component exceeds that of the A_{2} component by a factor of 2 . Therefore, the intensity of the transitions to E should also exceed the intensity of the transition to A_{2} by a factor of 2 . Indeed, the ratio of intensities in gel films is 2.01 at $T_{\text {an }}=700^{\circ} \mathrm{C}$. However, at $T_{\text {an }}=900$ and $1000^{\circ} \mathrm{C}$, the ratios of intensities are, respectively, 2.34 and 2.79 , i.e., much larger than 2.

To explain this effect, we will take into account that with an increase in temperature the symmetry of optical centers of the LaAlO_{3} type increases from trigonal to cubic [3]. In cubic fields, the ${ }^{7} F_{1}$ multiplet is unsplit. Therefore, with an increase in $T_{\text {an }}$ from 700 to $900^{\circ} \mathrm{C}$, optical centers of different systems (trigonal and cubic) should be formed in gel films and three lines should be observed in the band due to the ${ }^{5} D_{0} \longrightarrow{ }^{7} F_{1}$ transition. Spectral analysis of this band confirms this suggestion (Table 3). With allowance for the formation of the third component, the ratio of the intensities of the transitions to the E and A_{2} components is 2.03 ; i.e., close to the theoretical value 2 . The ratio of the intensity of the transition to the B_{2} component of the cubic system to the total intensity of the ${ }^{5} D_{0} \longrightarrow{ }^{7} F_{1}$ band should approximately coincide with the relative fraction of EuAlO_{3} cubic centers. This circumstance makes it possible to estimate this fraction for films annealed at different $T_{\text {an }}$ as 8, 21, and 37% at 900,1000 , and $1100^{\circ} \mathrm{C}$, respectively. A significant increase in the fraction of such centers at $T_{\text {an }}=$ $1100^{\circ} \mathrm{C}$ is confirmed by the comparison of the Stark level energies at this temperature with the spectrum reported in [3]. In Table 1, the energies of these levels are printed in italics. Because of ambiguous assignment of the energy levels to the centers of $\mathrm{Al}_{2} \mathrm{O}_{3}$ or LaAlO_{3} types, the crystal field parameters for the gel film at $T_{\mathrm{an}}=1100^{\circ} \mathrm{C}$ were not determined.

To analyze the geometry of optical centers in more detail, we will apply the methods of computer simulation. To this end, it is necessary to calculate the crystal field parameters according to the microscopic model (for example, using the model of exchange charges, which was proposed in [11] and developed in [12, 13]).

According to this model, the crystal field parameters can be written as
$B_{q}^{k}=-e^{2}\left\langle r^{k}\right\rangle \sum_{j} \rho_{j}\left(2 \beta_{j}\right)^{k+1} g_{j} / R_{j}^{k+1}\left(C_{q}^{k}\left(\theta_{j}, \varphi_{j}\right)\right)^{*},(3)$ where e is the elementary charge; $\left\langle r^{k}\right\rangle$ is the mean calculated on the $4 f$ functions; $-e g_{j}$ and R_{j}, θ_{j}, and φ_{j} are, respectively, the charge and spherical coordinates of the j th ion;

$$
\begin{equation*}
\beta_{j}=\frac{1}{1+\rho_{j}} \quad \text { and } \quad \rho_{j}=\rho_{0}\left(\frac{R_{0}}{R_{j}}\right)^{n} \tag{4}
\end{equation*}
$$

Here, R_{0} is the least distance $R_{j} ; n=3.5$; and, for the Eu^{3+} ion, $\rho_{0}=0.05$.

In the optical centers with the structure of the $\mathrm{Al}_{2} \mathrm{O}_{3}$ type, the coordinates of oxygen ions will be chosen as follows:

$$
R_{1}, \theta_{1}, \varphi=\left\{\begin{array}{l}
0 \\
2 \pi / 3 \\
4 \pi / 3
\end{array} \quad \text { and } \quad R_{2}, \theta_{2}, \varphi=\left\{\begin{array}{l}
\pi / 3 \\
\pi \\
5 \pi / 3
\end{array}\right.\right.
$$

The empty octahedral position on the C_{3} axis contains a Bi^{3+} ion; i.e., this ion has the coordinates (0,0 , $2 R_{1} \cos \theta_{1}$).

In the optical centers with the LaAlO_{3} structure, Bi^{3+} ions are absent and Eu^{3+} ions are surrounded with $12 \mathrm{O}^{-}$ ions having the coordinates

$$
\begin{gathered}
R_{1}, \theta_{1}, \varphi=\left\{\begin{array}{l}
0 \\
2 \pi / 3, \\
4 \pi / 3
\end{array} \quad R_{2}, \theta_{2}, \varphi=\left\{\begin{array}{l}
\pi / 3 \\
\pi \\
5 \pi / 3
\end{array}\right.\right. \\
\text { and } \quad R_{3}, \theta_{3}, \varphi=\pi / 6+n \pi / 3 \\
\text { at } \quad n=0,1,2,3,4,5 .
\end{gathered}
$$

The parameters R_{1}, θ_{1}, R_{2}, and θ_{2} for the centers with the $\mathrm{Al}_{2} \mathrm{O}_{3}$ structure and $R_{1}, \theta_{1}, R_{2}, \theta_{2}, R_{3}$, and θ_{3} for the centers with the LaAlO_{3} structure were chosen by the least-squares method so as to minimize the root-meansquare deviation of the crystal field parameters calculated using formulas (3) and (4) from the experimental values from Table 2. The root-mean-square deviation RMS Dev was estimated from the formula

$$
\text { RMS Dev }=\sqrt{\sum_{k, q}\left(B_{q}^{k}(\text { calc })-B_{q}^{k}(\operatorname{expt})\right)^{2}}
$$

The results of the calculations are listed in Tables 4 and 5. On the basis of the obtained values of RMS Dev, we can conclude that the crystal fields observed in the gel films annealed at $700^{\circ} \mathrm{C}$ can be implemented in optical centers of both types, while in the gel films annealed at $T_{\text {an }}=900$ or $1000^{\circ} \mathrm{C}$, this implementation is possible

Table 4. Results of the crystal field calculation according to the model of exchange charges of optical centers with the $\mathrm{Al}_{2} \mathrm{O}_{3}$ structure. The Bi^{3+} ion is located on the C_{3} axis and has the coordinates $\left(0,0,2 Z_{1}\right)$

Coordinates	$T_{\mathrm{an}}=700^{\circ} \mathrm{C}$	$T_{\mathrm{an}}=900^{\circ} \mathrm{C}$	$T_{\mathrm{an}}=1000^{\circ} \mathrm{C}$
R_{1}	2.846	2.684	2.506
θ_{1}	44.8°	41.3°	40.6°
Z_{1}	2.020	2.016	1.904
R_{2}	2.620	2.462	2.381
$\pi-\theta_{2}$	70.3°	71.9°	73.5°
Z_{2}	-0.886	-0.765	-0.676
$B_{0}^{2}($ expt $) / B_{0}^{2}$ (calc)	Crystal field parameters		
$B_{0}^{4}($ expt $) / B_{0}^{4}$ (calc)	$-850.7 /-850.52$	$-866.7 /-857.20$	$-753.8 /-754.58$
$B_{3}^{4}($ expt $) / B_{3}^{4}$ (calc)	$-420.1 /-420.04$	$-405.2 /-339.40$	$-392.1 /-401.06$
RMS Dev			$1514.2 / 1422.75$

Table 5. Results of the crystal field calculation according to the model of exchange charges of optical centers with the LaAlO_{3} structure

Coordinates	$T_{\mathrm{an}}=700^{\circ} \mathrm{C}$	$T_{\mathrm{an}}=900^{\circ} \mathrm{C}$	$T_{\mathrm{an}}=1000^{\circ} \mathrm{C}$	$[4]$
R_{1}	2.613	2.837	2.828	3.220
θ_{1}	36.9°	33.0°	32.8°	34.8°
Z_{1}	2.089	2.379	2.376	2.645
R_{2}	2.916	2.662	2.676	3.039
$\pi-\theta_{2}$	33.8°	36.5°	34.9°	3.6°
Z_{2}	-2.423	-2.140	-2.195	-2.531
R_{3}	2.651	2.650	2.650	3.048
θ_{3}	92.1°	89.1°	90.4°	-0.0°
Z_{3}°	-0.088	0.042	-0.016	-0.001
$B_{0}^{2}(\operatorname{expt}) / B_{0}^{2}$ (calc)	$-738.7 /-740.37$	$-727.8 /-694.77$	$-616.6 /-564.70$	$-214.0 /-214.01$
$B_{0}^{4}($ expt $) / B_{0}^{4}$ (calc)	$711.8 / 707.71$	$989.4 / 840.32$	$1191.9 / 950.23$	$451.0 / 451.03$
$B_{3}^{4}($ expt $) / B_{3}^{4}$ (calc)	$664.6 / 655.52$	$873.8 / 635.02$	$983.1 / 583.78$	$314.0 / 314.00$
RMS Dev	10.10	283.43	469.63	0.03

only in the optical centers of the $\mathrm{Al}_{2} \mathrm{O}_{3}$ type. Note that the probability of existence of $\mathrm{Eu}-\mathrm{O}-\mathrm{Bi}$ optical centers sharply decreases at $T_{\text {an }}=1000^{\circ} \mathrm{C}$. The decrease in the distances R_{1} and R_{2} in the centers of the $\mathrm{Al}_{2} \mathrm{O}_{3}$ type, which follows from the calculation, is in agreement with the observed increase in the film density. The values of the Z coordinates of O^{-}ions (Table 4) indicate that optical centers are formed in a heavily deformed $\mathrm{Al}_{2} \mathrm{O}_{3}$ structure with a significant displacement of the Eu^{3+} ion to the three "lower" O^{-}ions with respect to the
position occupied by Al^{3+}. It was suggested in [2] that such deformation can be caused by incorporation of rare earth ions into corundum.

The existence of optical centers of the $\mathrm{Al}_{2} \mathrm{O}_{3}$ type is confirmed by comparison of the calculated ratios $I_{4}\left({ }^{5} D_{0} \longrightarrow{ }^{7} F_{4}\right) / I_{2}\left({ }^{5} D_{0} \longrightarrow{ }^{7} F_{2}\right)$ of the transition intensities with the experimental values at annealing temperatures of 700,900 , and $1000^{\circ} \mathrm{C}$.

In neglect of the refractive index dispersion, the ratio of these intensities (the luminescence branching
ratio) depends on the frequency v_{i} and transition line strength S_{i} as follows:

$$
\begin{equation*}
\frac{I_{4}}{I_{2}} \approx \frac{v_{4}^{3} S_{4}}{v_{2}^{3} S_{2}} \tag{5}
\end{equation*}
$$

The transitions under consideration are of electricdipole type; therefore, the line strength is set by the intensity parameters Ω_{k} as follows:

$$
\begin{equation*}
S_{i}=e^{2} \sum_{k=2,4,6} \Omega_{k}\left\langle^{5} D_{0}\left\|U^{k}\right\|^{7} F_{i}\right\rangle^{2}, \tag{6}
\end{equation*}
$$

where $\left\langle{ }^{5} D_{0}\left\|U^{k}\right\|^{7} F_{i}\right\rangle$ are the reduced matrix elements of the unit tensor U^{k}. The intensity parameters are determined through the crystal field parameters of B_{t}^{p} of odd ranks p using the formula [14]

$$
\begin{gather*}
\Omega_{k}=4 \frac{(2 k+1)}{\Delta_{f d}^{2}}\langle f| r|d\rangle^{2}\left\langle f\left\|c^{1}\right\| d\right\rangle^{2} \\
\times \sum_{p, t}\left\{\begin{array}{cc}
1 & k \\
f & p
\end{array}\right\}^{2}\left\langle d\left\|c^{p}\right\| f\right\rangle^{2}\left|B_{t}^{p}\right|^{2}, \tag{7}
\end{gather*}
$$

where $\Delta_{f d}$ is the energy of the excited $4 f^{N-1} 5 d$ configuration and $\left\langle d\left\|c^{p}\right\| f\right\rangle$ is the one-electron reduced matrix element of the spherical tensor.

The ratios $1.08,0.83$, and 0.40 , calculated from formulas (5)-(7), are in satisfactory agreement with the corresponding experimental values: $1.09,0.76$, and 0.53 . Note that on the assumption of the LaAlO_{3} structure, the ratio of intensities does not exceed 0.02 for all annealing temperatures.

CONCLUSIONS

The results reported above, with allowance for the data of [1], suggest that Eu-O-Bi complex optical centers with the $C_{3 V}$ symmetry in the heavily deformed $\mathrm{Al}_{2} \mathrm{O}_{3}$ structure and EuAlO_{3} crystallites with the D_{3} symmetry are formed in (40-60) $\mathrm{Al}_{2} \mathrm{O}_{3}-(20-$ $40) \mathrm{Eu}_{2} \mathrm{O}_{3}-(10-30) \mathrm{BiOF}$ films at $T_{\mathrm{an}}=700^{\circ} \mathrm{C}$. However, EuAlO_{3} crystallites do not exhibit luminescence due to the effective transfer of electronic excitations to the complex optical centers. The increase in T_{an} to $1100^{\circ} \mathrm{C}$ leads to complete removal of Bi from complex centers, appearance of the luminescence bands charac-
teristic of EuAlO_{3} crystallites, and transformation of a large fraction of the latter into centers with the O_{h} symmetry. The fraction of photons emitted in the ${ }^{5} D_{0} \longrightarrow$ ${ }^{7} F_{4}$ transition decreases from 45 to 20%.

ACKNOWLEDGMENTS

This study was supported in part by the International Science and Technology Center (grant no. V-276-2).

REFERENCES

1. G. E. Malashkevich, G. P. Shevchenko, Yu. V. Bokshits, et al., Opt. Spektrosk. 98 (2), 228 (2005) [Opt. Spectrosc. 98, 190 (2005)].
2. A. B. Kulinkin, S. P. Feofilov, and R. I. Zakharchenya, Fiz. Tverd. Tela (St. Petersburg) 42 (5), 835 (2000) [Phys. Solid State 42, 857 (2000)].
3. M. Faucher and P. Caro, J. Chem. Phys. 63 (1), 446 (1975).
4. A. M. Leushin, Tables of Functions Transforming According to the Irreducible Representations of Crystallographic Point Groups (Nauka, Moscow, 1968) [in Russian].
5. Chemistry and Periodic Table, Ed. by K Saito (Iwanami Shoten, Tokyo, 1979; Mir, Moscow, 1982).
6. M. Yashima and D. Ishimura, Chem. Phys. Lett. 378, 395 (2003).
7. E. Keller and V. Kramer, Acta Crystallogr., Sect. B: Struct. Sci. 62, 417 (2006).
8. B. R. Judd, Operator Techniques in Atomic Spectroscopy (McGraw-Hill, New York, 1963; Mir, Moscow, 1970).
9. C. Bungenstock, T. Troster, W. B. Holzapfel, et al., J. Phys.: Condens. Matter 12, 6959 (2000).
10. N. C. Chang, J. B. Gruber, R. P. Leavitt, and C. A. Morrison, J. Chem. Phys. 76, 3877 (1982).
11. B. Z. Malkin, Z. I. Ivanenko, and I. B. Aǐzenberg, Fiz. Tverd. Tela (Leningrad) 12 (7), 1873 (1970) [Sov. Phys. Solid State 12, 1491 (1970)].
12. N. V. Starostin, Physics and Spectroscopy of Laser Crystals (Nauka, Moscow, 1984) [in Russian].
13. G. F. De Sa, O. L. Malta, C. Donega De Mello, et al., J. Coord. Chem. Rev. 196 (1), 165 (2000).
14. A. A. Kornienko, Theory of Spectra of Rare Earth Ions in Crystals (Izd-vo UO "Masherov VGU", Vitebsk, 2003) [in Russian].

Translated by Yu. Sin'kov

