## ЭНЕРГЕТИКА, ТЕПЛО- И МАССООБМЕН

УДК 685.34.025.44:536.3

# А. И. ОЛЬШАНСКИЙ, Е. Ф. МАКАРЕНКО, В. И. ОЛЬШАНСКИЙ, С. Г. КОВЧУР КИНЕТИКА ТЕРМОРАДИАЦИОННОЙ СУШКИ ЗАГОТОВОК ВЕРХА ОБУВИ

Витебский государственный технологический университет

(Поступила в редакцию 22.03.2007)

Проблема энергосбережения, технологического обеспечения процессов влажно-тепловой обработки и сушки обуви, а также повышение качества и формоустойчивости обуви является актуальной научной проблемой. Для обеспечения качества продукции необходимо проведение комплекса научных исследований процессов термофиксации и сушки обувных заготовок: исследование закономерности распределения температуры по толщине пакета обувных материалов, изучение различных способов подвода тепла к материалам обувной заготовки. В настоящее время при формовании заготовок верха обуви из эластичных и термопластичных материалов в основном применяются конвективный и терморадационный способы сушки и термообработки.

Для изучения основных закономерностей процесса тепломассообмена в заготовках верха обуви, составы которых приведены в табл. 1, в процессе обработки термоизлучением были проведены экспериментальные исследования на специальной терморадиационной установке, соответствующей требованиям международных стандартов и описанной в ISO 6942-81-Е.

| Состав заготовки | Материал                            | δ, мм | Σδ, мм | <i>G</i> <sub>с</sub> , г | $\overline{u_0}$ , $K\Gamma/K\Gamma$ |
|------------------|-------------------------------------|-------|--------|---------------------------|--------------------------------------|
| 1                | Верх – юфть КРС термоустойчивая     | 2,16  | 4,7    | 46,8                      | 0,46                                 |
|                  | Подносок – термофлекс               | 1,42  |        |                           |                                      |
|                  | Межподкладка – термобязь арт. Б-142 | 0,48  |        |                           |                                      |
|                  | Подкладка – термотрикотаж           | 0,55  |        |                           |                                      |
| 2                | Верх – кожтовар Анилин № 313–62     | 1,76  | 4,3    | 39,6                      | 0,46                                 |
|                  | Подносок – термофлекс               | 1,42  |        |                           |                                      |
|                  | Межподкладка – термобязь арт. Б-142 | 0,48  |        |                           |                                      |
|                  | Подкладка – термотрикотаж           | 0,55  |        |                           |                                      |

Таблица 1. Составы экспериментальных пакетов материалов для верха обуви (размеры образцов 70×220 мм)

Кинетика сушки влажных материалов термоизлучением принципиально не отличается от кинетики конвективной сушки. Кривые сушки и кривые скорости сушки типичны при обоих способах подвода тепла. Однако при сушке влажных материалов и сухой термообработке термоизлучением наблюдаются характерные различия, обусловленные методом энергоподвода. В воздушно-сухом состоянии многие материалы (ткани, тонкие кожи и др.) относятся к материалам с большой проницаемостью для инфракрасных лучей внутрь тела, а во влажном состоянии практически непроницаемы [1–3]. Проникновение инфракрасных лучей внутрь тела вызывает аномальное распределение температур по толщине. Только в начале процесса прогревания тела, когда температура среды  $t_c$  выше температуры поверхности тела  $t_n$ , распределение ее имеет тот же характер, что и при сушке конвекцией. Затем температура центральных слоев  $t_n$  оказывается



Кривые изменения температур по толщине образцов для сухих и влажных пакетов материалов и кривая сушки:  $1 - t_{\mu}$  сухих образцов;  $2 - t_{\mu}$  влажных образцов;  $3 - t_{\mu}$  влажных образцов;  $4 - t_{\mu}$  сухих образцов;  $5 - \kappa$ ривая сушки.

выше температуры поверхности  $t_{\rm n}$ . Особенно это характерно при обработке термоизлучением пакетов в воздушно-сухом состоянии, а для влажных материалов этот эффект определяется степенью проницаемости излучения внутрь тела.

Из рисунка следует, что влажные пакеты практически непроницаемы для инфракрасных лучей а распределение температур по толщине имеет тот же характер, что и при конвективной сушке (т. е.  $t_{\rm n}$ )  $t_{\rm u}$ ). Анализ полученных экспериментальных данных показывает, что глубина максимума температуры не совпадает с глубиной проникновения инфракрасного излучения. Только в тонких пакетах обе экстремальные зоны сближаются.

Проникновение инфракрасных лучей в глубь материала зависит от длины волны максимума излучения, которая определяется законом Вина ( $\lambda_{max} \cdot T = \text{const}$ ). Еще исследования П. Д. Лебедева [4] показали, что максимальная глубина проникновения инфракрасных лучей зависит от спектральных оптических свойств материала, от длины волны, температуры излучателя. По данным П. Д. Лебедева [1, 2, 4], инфракрасные лучи способны проникать для тканей на толщину четырех слоев, для папиросной бумаги – на восемь слоев, для кожи – на 3–5 мм. В большинстве случаев влажные материалы обладают существенно меньшей проницаемостью или вообще непроницаемы для инфракрасных лучей по сравнению с сухими, причем проницаемость уменьшается с увеличением влажности материала.

Для подготовленных к эксперименту сухих и влажных ( $u_0 = 0,46$ ) образцов определены термические сопротивления ( $\delta/\lambda$ ). Оказалось, что термические сопротивления для влажных пакетов в 2,5–3 раза меньше, чем для сухих. Следовательно, проникающая способность инфракрасных лучей внутрь тела зависит от термического сопротивления пакетов и с уменьшением сопротивления проникающая способность также уменьшается. Рассмотрим механизм переноса тепла и влаги на основе анализа экспериментов по сушке термоизлучением влажных пакетов материалов. За счет быстрого высокотемпературного прогрева материала внутренняя диффузия влаги не успевает за внешней и процесс сушки пакетов, как видно из рисунка, протекает в периоде падающей скорости сушки.

Анализ изменения температуры и влагосодержания влажных пакетов показывает, что градиент влагосодержания всегда имеет положительное значение, т. е. влагосодержание в центре больше, чем на поверхности ( $u_{\rm u}$  >  $u_{\rm n}$ ). Диффузионный поток влаги перемещается из центра к поверхности, а градиент температуры имеет отрицательное значение для влажных пакетов ( $t_{\rm n}$  >  $t_{\rm u}$ ) и термодиффузионный поток направлен навстречу диффузионному (как при конвективной сушке). По мере удаления влаги с поверхности образцов перепад влагосодержания увеличивается и перенос влаги за счет  $\nabla u$  больше переноса за счет  $\nabla t$ , т. е. влага перемещается из центральных слоев к поверхности. Для всего периода падающей скорости сушки у влажных пакетов (рисунок) из-за непроницаемости материала градиент температуры оставался отрицательным ( $t_{\rm n}$  >  $t_{\rm u}$ ). Обработка экспериментальных данных образцов по сушке термоизлучением базируется на уравнении теплового баланса. Тепловой баланс при сушке термоизлучением имеет вид [3]

$$dQ_A = dQ_{\rm M} + dQ_{\rm HCII} + dQ_{\rm IIOT}, \qquad (1)$$

где  $dQ_A = dQ_{_{\rm H3Л}} - dQ_R - dQ_{_{\rm I\!I}}$  – часть энергии излучения, поглощаемая влажным материалом, кДж;  $dQ_{_{\rm H3Л}}$ ,  $dQ_R$ ,  $dQ_{_{\rm I\!I}}$  – соответственно энергия излучения, падающая на материал, энергия, отраженная материалом, энергия, прошедшая сквозь тело, кДж;  $dQ_{_{\rm M}}$  – энергия, затраченная на нагрев материала, кДж;  $dQ_{_{\rm HCII}}$  – энергия, затраченная на испарение влаги, кДж;  $dQ_{_{\rm HOI}}$  – потери энергии в окружающую среду, кДж.

Энергия, затраченная на испарение влаги:

$$dQ_{\rm HC\Pi} = j_{\rm HC\Pi} r F_0 d\tau \,, \tag{2}$$

где  $j_{\rm исп}$  – интенсивность сушки, кг/(м<sup>2</sup>·с); r – теплота парообразования, кДж/кг;  $F_0$  – поверхность испарения, м<sup>2</sup>.

Интенсивность сушки определяется уравнением

$$j_{\rm HCH} = \frac{du}{d\tau} \frac{G_{\rm c}}{F_0},\tag{3}$$

где  $du/d\tau$  – скорость сушки, 1/с;  $G_{\rm c}$  – масса сухого материала, кг.

Уравнение теплового баланса для сушильной камеры при сушке термоизлучением имеет вид [3]

$$EA_{\Pi}F_{0}\Delta\tau = G_{M}c_{M}\Delta t + j_{\mu\alpha\Pi}rF_{0}d\tau + Q_{\Pi\alpha\Upsilon}, \qquad (4)$$

где E – плотность излучения, определяемая законом Стефана–Больцмана, Вт/м<sup>2</sup>;  $A_{\rm II}$  – поглощательная способность облучаемого материала;  $G_{\rm M}c_{\rm M}\Delta t$  – энергия, идущая на нагрев влажных пакетов материалов.

Источником излучения являлись керамические излучатели с длиной волны 2–7 мкм, дающие максимум излучения в интервале 4–7 мкм, степень черноты поверхности излучателя  $\varepsilon_{_{\rm ИЗЛ}} = 0,93$ , температура поверхности излучателя  $t_{_{\rm ИЗЛ}} = 630-650$  °C. Излучатели располагались на расстоянии l = 0,2 м от образцов с мощностью N = 3 кВт.

Поглощательная способность влажных пакетов при начальном влагосодержании  $u_0 = 0,55-0,46$  принималась из условия наличия у поверхности пакетов тонкой пленки воды  $A_{\Pi} = \varepsilon_{\text{вл.м}} = 0,94$ , угловые коэффициенты облучения в зависимости от расположения излучателя и материала  $\varphi_{1-2} = 0,62$  [5].

Результаты обработки экспериментальных данных по сушке влажных пакетов инфракрасным излучением приведены в табл. 2 для двух случаев, представленных на рисунке:

1)  $u_0 = 0,46$ , перепад  $\Delta u = \overline{u_0} - \overline{u_T} = 0,05$  за  $\Delta \tau = 10$  с,  $u_T = 0,41$  (точка *A*);

2)  $\overline{u} = 0,18$ , перепад  $\Delta u = \overline{u} - \overline{u_{\rm T}} = 0,03$  за  $\Delta \tau = 10$  с,  $u_{\rm T} = 0,15$  (точка *B*),

где  $u_{\rm T}$  – текущее влагосодержание материала за  $\Delta \tau = 10$  с.

При обработке опытных данных использовалось основное уравнение кинетики сушки [1]:

$$q_{\rm M} = r\rho_0 R_V \frac{d\overline{u}}{d\tau} (1 + {\rm Rb}), \qquad (5)$$

где  $q_{\rm M}$  – плотность теплового теплового потока, кВт/м<sup>2</sup>;  $\rho_0$  – плотность сухого материала, кг/м<sup>3</sup>;  $R_V = V_0 / F_0$  – отношение объема к поверхности абсолютно сухого тела, м; Rb – критерий Ребиндера, определяемый по температурным кривым  $\bar{t} = f(\bar{u})$ . Обработка опытных данных зависимостей Rb =  $f(\bar{u})$  при сушке различными методами проводилась по формуле [6]:

$$Rb = A \exp[-n(u - u_p)], \qquad (6)$$

где  $u_{\rm p}$  – равновесное влагосодержание материала.

В табл. 2 приведены значения постоянных *А* и *n* в формуле (6) для некоторых материалов [6]. В табл. 3 приведены результаты анализа экспериментальных данных при сушке термоизлучением заготовок верха обуви.

| Mamanyaan           | Режимные параметры        |        |       | 4    |     |  |
|---------------------|---------------------------|--------|-------|------|-----|--|
| материал            | <i>t<sub>c</sub></i> , °C | υ, м/с | φ, %  | A    | n   |  |
| Кожа для низа обуви | 50-70                     | 3–5    | 15    | 0,15 | 8,5 |  |
| Войлок шерстяной    | 90-120                    | 3–20   | 5     | 0,1  | 6   |  |
| Фетр                | 50                        | 0,5    | 20-75 | 0,1  | 10  |  |

Таблица 2. Постоянные А и п в формуле (6)

Таблица 3. Результаты анализа экспериментальных данных при сушке термоизлучением заготовок верха обуви

|                                                                                                                                                             | Влагосодержание             |                               |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------|--|--|
| Расчетная формула                                                                                                                                           | точка $A  u_{\rm T} = 0, 4$ | точка В и <sub>т</sub> = 0,15 |  |  |
| Δτ, c                                                                                                                                                       | 10                          | 10                            |  |  |
| $Q_{\text{погл}} = EA_{\text{п}}F_0 \Delta \tau$ , кДж                                                                                                      | 5,98                        | 2,57                          |  |  |
| $A_{\Pi} = \varepsilon_{\text{вл. м.}}$ , закон Кирхгофа                                                                                                    | 0,94                        | 0,4                           |  |  |
| $E = \varepsilon_{_{\rm H3Л.}} C_0 [T_{_{\rm H3Л}}/100],  \kappa {\rm Bt/m^2}$                                                                              | 41,7                        | 41,7                          |  |  |
| $Q_{\rm M} = G_{\rm вл.  M.} C_{\rm M} \Delta t_{\rm M},$ кДж                                                                                               | 2,2                         | 0,8                           |  |  |
| $Q_{\rm исn} = j_{\rm исn} r F_0 \Delta \tau$ , кДж                                                                                                         | 3,7                         | 1,75                          |  |  |
| $\Delta Q_{ m nor}$ , кДж                                                                                                                                   | 0,08                        | 0,02                          |  |  |
| $Q_{\text{M},\text{ погл}} = \varepsilon_{\text{пр}} C_0 [(T_{\text{M}37}/100)^4 - (T_{\text{п},\text{M}}/100)^4] (F_1/F_2) \varphi_{1-2}, \text{ kBt/m}^2$ | 39,8                        | 15,6                          |  |  |
| $\varepsilon_{\rm np} = 1/[(1/\varepsilon_{\rm M3R}) + (F_1/F_2)(1/\varepsilon_{\rm M} - 1)],  \text{kBt/m}^2$                                              | 0,78                        | 0,31                          |  |  |
| $F_1/F_2$                                                                                                                                                   | 1,95                        | 1,95                          |  |  |
| $\phi_{1-2}$                                                                                                                                                | 0,62                        | 0,62                          |  |  |
| $Q_{\text{погл}} = Q_{\text{м. погл.}} F_0 \Delta \tau, \kappa Д ж$                                                                                         | 6,1                         | 2,43                          |  |  |
| $q_{\rm M} = r\rho_0 R_V (du/d\tau)(1 + Rb),  \kappa \mathrm{Bt/M^2}$                                                                                       | 10,2                        | 14,9                          |  |  |
| $du/d\tau$ , 1/c                                                                                                                                            | $7.10^{-3}$                 | 1,6.10-3                      |  |  |
| $Rb = A \exp[-n(u-u_p)]$                                                                                                                                    | 0,1                         | 0,3                           |  |  |
| $Q_{\rm M} = q_{\rm M} F_0 \Delta \tau$ , кД́ж                                                                                                              | 6,18                        | 2,36                          |  |  |

Таким образом, к основным факторам, влияющими на интенсивность терморадиационной сушки влажных материалов, можно отнести: спектральные характеристики излучателя, поглощательную способность материала, расположение генератора излучения и объекта облучения, геометрические параметры рабочей камеры и среды. Основными определяющими факторами следует считать температуру излучателя и расстояние излучателя от поверхности материала. Экспериментально установлено [2], что максимум излучения и степень использования энергии можно повысить до 90%, применяя экономичные излучатели (трубчатые, керамические) с правильно рассчитанным размещением по отношению к высушиваемому объекту. Приведенная методика обработки результатов экспериментальных исследований влажных пакетов, как следует из анализа расчетных данных табл. 3, дает вполне удовлетворительные совпадения, в пределах точности проведения экспериментов.

Анализ экспериментальных данных при термообработке сухих и сушке влажных пакетов образцов позволил выявить различия в характере распределения температур по толщине паке-

тов, получить зависимости t = f(u) для влажных пакетов и определить постоянные, входящие в формулу (6).

### Литература

1. Лыков А.В. Теория сушки. М., 1968.

2. Кавказов Ю. Л. Тепло-и массообмен в технологии кожи и обуви. М., 1973.

- 3. Ганин Е.А. и др. Теплоиспользующие установки в текстильной промышленности. М., 1989.
- 4. Лебедев П. Д. Сушка инфракрасными лучами. М., 1955.
- 5. Михеев М.А., Михеева Н.М. Основы теплопередачи. М., 1973.
- 6. Куц П. С., Ольшанский А. И. Инженерно-физический журнал. 1975. Т. 28, № 4. С. 19–21.

#### A. I. OLSHANSKY, E. F. MAKARENKO, V. I. OLSHANSKY, S. G. KOVCHUR

#### KINETICS OF THERMO-RADIATING DRYING OF BLANKS OF FOOTWEAR TOP

#### **Summary**

Mechanisms of drying of damp packages of shoe materials and their dry heat treatment are analyzed at a thermo-radiating way of heat supply to material. The design procedure of intensity of thermo-radiating drying on the basis of the equation of thermal balance for drying chambers is developed, allowing to establish initial data for designing highly effective drying installations.