дителей.

Liebherr (Швейцария) — производство зубошлифовальных станков, а также зубообрабатывающего инструмента, средств автоматизации.

Samputensili (Италия) — производство зубошлифовальных станков непрерывного обкатного и профильного зубошлифования.

KAPP& NILES (Германия) — производственная программа включает: зубошлифовальные станки для колес с внешним и внутренним зубчатым зацеплением, универсальные зубошлифовальные станки и червячно-шлифовальные станки.

Gearspect (Чешская Республика) -- производство обкаточных и профильных шлифовальных станков для зубчатых колес, устройства для измерения допусков шестерен.

Hofler (Германия) — производство станков, работающих прерывистым профильным методом.

Gleason (США) — производство зубошлифовальных станков, работающих по методу обката, профильного шлифования и комбинированным методом.

После проведенного гнализ оборудования для зубошлифования были выявлены следующие особенности:

- 1. Большинство зубошлифовальных станков работают методом обката червячным шлифовальным кругом, так как он наиболее производительный.
- 2. Оборудование позволяет получать зубчатые колеса высокой точности (3-4 степень точности);
 - 3. Все станки оснащаются системами числового программного управления;
- 4. Станки обладают большой гибкостью и могут быть адаптированы для обработки различных типов деталей в разных производственных условиях;
 - 5. В станки встраивается устройство динамической балансировки шлифовального;
- 6. Правка шлифовального круга производится алмазными инструментами по управляющей программе;
 - 7. В станки встраиваются специальные устройства для измерение деталей;
- 8. Большинство фирм производит не только станки, но и вспомогательное, измерительное оборудование, разрабатывает программное обеспечения к станкам.

Анализ показывает, что для производства отечественными заводами зубошлифовального оборудования современного уровня необходимыми условиями являются создание адаптивных систем управления процессом шлифования, применение современных абразивных инструментов.

УДК 620.91(476)

ПЕРСПЕКТИВЫ РАЗВИТИЯ И ИСПОЛЬЗОВАНИЯ НЕТРАДИЦИОННЫХ ИСТОЧНИКОВ ЭНЕРГИИ В РЕСПУБЛИКЕ БЕЛАРУСЬ

Студ. Терещенко Ю.В., к.т.н., доц. Дрюков В.В. Витебский государственный технологический университет

Собственными традиционными энергоресурсами Республика Беларусь обеспечена менее чем на 20 %. В связи с этим, одной из стратегических задач развития экономики Республики Беларусь является освоение и эффективное использование нетрадиционных возобновляемых источников энергии (НВИЭ), которые, будучи вовлеченными в экономику страны, поспособствуют повышению энергетического потенциала Республики.

В результате анализа выделены основные направления нетрадиционных возобновляемых источников энергии, которые могут получить развитие и быть использованы в Республике. К ним относятся: солнечная, гидроэнергия, энергия ветра, геотермальная энергия, энергия преобразования биомассы, энергия, получаемая в результате сжигания топливной древесины, древесного угля, торфа.

Реализация предложенных направлений будет способствовать энергетической независимости и безопасности Республики Беларусь, развитию местных топливно-энергетических ресурсов, которые могут быть вовлечены в экономику страны. В конечном итоге, использование НВИЭ приведет к снижению негативных последствий энергетического кризиса.

УДК 620.9

ПОВЫШЕНИЕ ЭНЕРГОЭФФЕКТИВНОСТИ ТРУБЧАТЫХ ТЕПЛООБМЕННЫХ АППАРАТОВ

Студ. Фукс Р. В., асс. Котов А. А., асс. Кузьменков С. М. Витебский государственный технологический университет

Существование современного общества невозможно без широкого использования достижений научно-технического прогресса. Обеспечение энергетической безопасности государства во многом зависит от эффективности использования топливно-энергетических ресурсов. Согласно республиканской программе энергосбережения, одними из приоритетных задач для повышения уровня эффективности использования топливно-энергетических ресурсов являются: повышение эффективности работы тепловых сетей, оптимизация схем теплоснабжения, модернизация и повышение эффективности работы котельных. При этом немаловажную роль играет правильный зыбор используемых теплообменных аппаратов.

Теплообменными аппаратами (теплообменниками) называют устройства, в которых осуществляется передача тепловой энергии от одного теплоносителя, более нагретого («горячего»), к другому, менее нагретому («холодному»). Чаще всего используют трубчатые, или кожухотрубные, теплообменные аппараты.

Разработанные более полувека назад кожухотрубные теплообменные аппараты, использовавшиеся в коммунальном хозяйстве Советского Союза и широко используемые до сих пор на постсоветском пространстве, во многом морально устарели и уже не соответствуют современным требованиям. Однако еще в 90-х годах были разработаны новые высокоэффективные кожухотрубные теплообменные аппараты ТТАИ.

Аббревиатура ТТАИ означает «тонкостенный теплообменный аппарат интенсифицированный», и все его достоинства связаны именно с интенсификацией процесса теплообмена. Несмотря на то, что аппараты ТТАИ относятся к кожухотрубным теплообменникам, их свойства резко отличаются от соответствующих свойств применявшихся ранее теплообменников.

Интенсификация теплообмена в аппаратах ТТАИ достигается комплексом технических приемов, включающим в себя: использование тонкостенных таплообменных трубок из нержавеющей стали, небольшого диаметра, со специальным профилем, обеспечивающим турбулизацию пристенного пограничного слоя потока жидкости и эффект самоочистки поверхности; использование специальной технологии создания трубных решеток, позволяющей получить особо плотный и нерегулярный трубный пучок, подвижно располагающийся в корпусе аппарата.

Аппараты ТТАИ - это теплообменники разборного типа. Их конструкция позволяет извлечь

Витебск 2014