02;05;07Моделирование оптических свойств иона U⁴⁺ в кристалле ZrSiO₄

© Л.А. Фомичева,¹ А.А. Корниенко,² Е.Б. Дунина²

¹ Институт технической акустики НАН Белоруссии,
 210023 Витебск, Белоруссия
 e-mail: Fomicheva_L_A@mail.ru
 ² Витебский государственный технологический университет,
 210035 Витебск, Белоруссия
 e-mail: Fomicheva_L_A@mail.ru, A_A_Kornienko@mail.ru

(Поступило в Редакцию 12 июля 2006 г.)

Исследована адекватность различных моделей кристаллического поля для описания спектральных свойств урана. Предложены эффективные гамильтонианы и операторы для наиболее адекватного моделирования. В результате описания энергетического спектра урана получены параметры четного и нечетного кристаллического поля и параметры ковалентности. На основе параметров ковалентности и параметров нечетного кристаллического поля вычислены параметры интенсивностей иона U⁴⁺ в ZrSiO₄.

PACS: 31.25.Eb

Введение

Актиноиды имеют достраивающуюся 5f-оболочку. Электронные состояния этой оболочки совпадают с состояниями соответствующей 4f-оболочки ионовлантаноидов. Поэтому свойства актиноидов во многом подобны свойствам лантаноидов. Именно по этой причине исследуется вопрос применения актиноидов в качестве активаторов при создании лазерных материалов.

Теоретические методы описания штарковского расщепления мультиплетов и интенсивностей спектральных линий лантаноидов достаточно хорошо разработаны. В ряде работ [1–6] было показано, что существенное влияние на спектроскопические характеристики лантаноидов оказывают возбужденные конфигурации. У актиноидов соответствующие возбужденные конфигурации имеют меньшую энергию и, следовательно, их влияние должно быть больше. Поэтому проблема адекватного описания и моделирования спектроскопических свойств актиноидов требует дополнительного исследования.

Ион U⁴⁺ имеет простейшую конфигурацию $(5f^2)$, для которой число экспериментальных данных существенно превосходит число варьируемых параметров теории. В цирконе ион U⁴⁺ занимает позицию с локальной симметрией D_{2d}. При такой симметрии окружения частично разрешены внутриконфигурационные электрические дипольные переходы. В связи с этим система U⁴⁺ :ZrSiO₄ является удобной для тестирования моделей кристаллического поля.

В настоящей работе исследуется адекватность различных моделей кристаллического поля для описания спектральных свойств урана. Предложены эффективные гамильтонианы и операторы для наиболее адекватного моделирования. Впервые на основе анализа штарковской структуры определены параметры ковалентности, нечетные параметры кристаллического поля и предсказаны параметры интенсивностей иона U⁴⁺ в ZrSiO₄.

Теоретические основы

Воздействие электрического поля окружения на 5*f*-электроны обычно учитывается с помощью гамильтониана кристаллического поля в приближении слабого конфигурационного взаимодействия

$$H_{cf} = \sum_{k} \sum_{q=-k}^{k} B_q^k C_q^k, \tag{1}$$

где B_q^k — параметры кристаллического поля; $C_q^k = \sum_{i=1}^N c_q^k(\vartheta_i, \varphi_i)$ — сферический тензор ранга k, действу-

ющий на угловые переменные *f*-электронов.

У 5f-элементов возбужденные конфигурации расположены достаточно низко и условие слабого конфигурационного взаимодействия не выполняется. Более детально влияние возбужденные конфигураций можно учесть в приближении промежуточного конфигурационного взаимодействия. В этом приближении гамильтониан кристаллического поля имеет вид [1];

$$H_{cf} = \sum_{k,q} \underbrace{\left[B_{q}^{k} + (E_{J} + E_{J'} - 2E_{f}^{0})G_{q}^{k}\right]}_{\widetilde{B}_{q}^{k}} C_{q}^{k}, \qquad (2)$$

где E_J , $E_{J'}$ — энергия мультиплетов; E_f^0 — центр тяжести энергии $5f^N$ конфигурации; C_q^k — параметры, обусловленные межконфигурационным взаимодействием.

Иногда влияние возбужденных конфигураций настолько сильное, что для адекватного описания штарковской структуры необходимо использовать гамильтониан кристаллического поля в приближении сильного конфигурационного взаимодействия [4]:

$$H_{cf} = \sum_{k,q} \underbrace{\left[B_q^k + \left(\frac{\Delta^2}{\Delta - E_J} + \frac{\Delta^2}{\Delta - E_{J'}} \right) \tilde{G}_q^k \right]}_{\bar{B}_q^k} C_q^k, \quad (3)$$

где Δ — энергия возбужденной конфигурации.

Появление линейной зависимости параметров \tilde{B}_q^k и \bar{B}_q^k от энергии мультиплетов объясняется разной степенью смешивания возбужденных конфигураций с высоко- и низколежащими мультиплетами.

Кроме того, следует заметить, что формула (3) справедлива, если определяющий вклад в параметры межконфигурационного взаимодействия \tilde{G}_q^k дает лишь одна возбужденная конфигурация или несколько возбужденных конфигураций с близкими значениями энергии Δ .

Обычно определяющий вклад в параметры \tilde{G}_q^k дают конфигурации противоположной четности $5f^{N-1}6d$ и конфигурации с переносом заряда.

Величину вкладов возбужденной конфигурации $5f^{N-1}6d$ в \tilde{G}_a^k можно оценить по формуле [7]:

$$\begin{split} \tilde{G}_{q}^{k}(d) &= -\frac{2k+1}{2\langle f \| C^{k} \| f \rangle} \sum_{p',p''} \sum_{t',t''} (-1)^{q} \begin{pmatrix} p' & p'' & k \\ t' & t'' & -q \end{pmatrix} \\ &\times \begin{cases} p' & p'' & k \\ f & f & d \end{cases} \langle f \| C^{p'} \| d \rangle \langle d \| C^{p''} \| f \rangle S_{t'}^{p'}(d) S_{t''}^{p''}(d), \end{split}$$

$$(4)$$

где $\langle f \| C^k \| f \rangle$, $\langle f \| C^{p'} \| d \rangle$ и $\langle d \| C^{p''} \| f \rangle$ — приведенные матричные элементы одноэлектронного сферического тензора, которые не обращаются в нуль только для четных f + k + f, f + p' + d и f + p'' + d; Δ_{df} — энергетический зазор между возбужденной $5f^{N-1}6d$ и основной $5f^N$ конфигурациями парамагнитного иона; $S_{t'}^{p'}(d) = \frac{B_{t'}^{p'}(d)}{\Delta_{df}}, S_{t''}^{p''}(d) = \frac{B_{t''}^{p''}(d)}{\Delta_{df}}$ — параметры кристаллического поля нечетной симметрии.

Величина наиболее существенных вкладов в \tilde{G}_q^k от процессов с переносом заряда задается выражением [4]:

$$\tilde{G}_q^k(\text{cov}) = \sum_b \tilde{J}^k(b) C_q^{k^*}(\theta_b, \Phi_b),$$
(5)

где под *b* подразумевается суммирование по лигандам ближайшего окружения; Θ_b , Φ_b — сферические углы, фиксирующие направление на лиганд *b*. Для параметров $\tilde{J}^k(b)$ удобно использовать приближенные выражения [6]:

$$\begin{split} \tilde{J}^2(b) &\approx \frac{5}{28} \left[2\lambda_{\sigma f}^2 + 3\lambda_{\pi f}^2 \right], \\ \tilde{J}^4(b) &\approx \frac{3}{14} \left[3\lambda_{\sigma f}^2 + \lambda_{\pi f}^2 \right], \\ \tilde{J}^6(b) &\approx \frac{13}{28} \left[2\lambda_{\sigma f}^2 - 3\lambda_{\pi f}^2 \right]. \end{split}$$
(6)

Здесь $\lambda_{if} = \gamma_{if} + S_{if}$ $(i = \sigma, \pi)$, где γ_{if} — параметр ковалентности соответствующий перескоку электрона из *i*-оболочки лиганда в *f*-оболочку актиноида; S_{if} — интеграл перекрывания.

Как отмечалось в [1-6], возбужденные конфигурации дают существенный вклад в энергии штарковских уровней. Эти возбужденные конфигурации снимают запрет на внутриконфигурационные f-f-переходы, поэтому тонкие детали штарковской структуры мультиплетов

и интенсивности межмультиплетных электрических дипольных переходов взаимосвязанны. Эту взаимосвязь можно проследить в нижеприведенных формулах.

Основной характеристикой межмультиплетных электрических дипольных переходов является сила линии [7]:

$$S_{JJ'} = e^2 \sum_{k=2,4,6} \Omega_k \langle \gamma[LS] J \| U^k \| \gamma'[L'S'] J' \rangle^2, \qquad (7)$$

где Ω_k — параметры интенсивностей, $\langle \gamma[LS]J \| U^k \| \gamma'[L'S']J' \rangle$ — приведенный матричный элемент единичного тензора U^k , вычисленный на функциях в приближении свободного иона.

Значения параметров интенсивностей задаются выражением [6]:

$$\Omega_k = \frac{1}{(2k+1)e^2} \sum_{p,t} \left| S_t^{(1k)p}(d) + S_t^{(1k)p}(\text{cov}) \right|^2, \quad (8)$$

где параметры $S_t^{(1k)p}(d)$ обусловлены влиянием конфигураций противоположной четности $5f^{N-1}6d$, а параметры $S_t^{(1k)p}(\text{cov})$ обусловлены эффектами ковалентности.

Для параметров $S^{(1k)p}(d)$ справедливо выражение [1]:

$$S_{t}^{(1k)p}(d) = |e|S_{t}^{p^{*}}(d) \frac{2k+1}{\sqrt{2p+1}} \begin{cases} 1 & k & p \\ f & d & f \end{cases}$$
$$\times \langle f \|C^{p}\| d\rangle \langle d \| C^{1} \| f \rangle \langle r_{df} \rangle.$$
(9)

Влияние процессов с переносом заряда можно оценить по приближенным формулам [6]:

$$S_t^{(1k)p}(\text{cov}) = \sum_b S^{(1k)p}(b) C_t^p(\Theta_{ab}, \Phi_{ab}), \qquad (10)$$

где

$$S^{(1k)p}(b) \approx -\frac{27}{2} |e| \langle r_{df} \rangle (2k+1) \sqrt{2p+1} \sum_{q} (-1)^{q} \\ \times \begin{pmatrix} 1 & k & p \\ -q & q & 0 \end{pmatrix} \left\{ \begin{pmatrix} f & k & f \\ -q & q & 0 \end{pmatrix} \begin{pmatrix} f & 1 & d \\ -q & q & 0 \end{pmatrix} \lambda_{\sigma f}^{2} \\ + \left[\begin{pmatrix} f & k & f \\ -(q+1) & q & 1 \end{pmatrix} \begin{pmatrix} f & 1 & d \\ -(q+1) & q & 1 \end{pmatrix} \\ + \begin{pmatrix} f & k & f \\ -(q-1) & q & -1 \end{pmatrix} \begin{pmatrix} f & 1 & d \\ -(q-1) & q & -1 \end{pmatrix} \Big] \lambda_{\pi f}^{2} \right\}.$$
(11)

Из сравнения формул (4), (9) и (6), (11) видно, что одни и те же параметры $S_t^p(d)$ и λ_{if} ($i = \sigma, \pi$) задают поправки к энергии штарковских уровней и силу линии межмультиплетных электрических дипольных переходов. Таким образом, действительно должна существовать корреляция между тонкими деталями штарковской структуры мультиплетов и интенсивностями спектральных линий.

Результаты и их обсуждение

При нормальных условиях ZrSiO₄ имеет пространственную группу симметрии $D_{4h}^{19}(I4/amd)$ ($a_0 = b_0 = 6.60, c_0 = 5.88 \text{ Å}$) [8]. Согласно [8], ионы Zr, Si и O имеют следующие координаты:

Zr0, 0, 00,
$$\frac{1}{2}$$
, $\frac{1}{4}$ $\frac{1}{2}$, 0, $\frac{3}{4}$ $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$;Si0, 0, $\frac{1}{2}$ 0, $\frac{1}{2}$, $\frac{3}{4}$ $\frac{1}{2}$, 0, $\frac{1}{4}$ $\frac{1}{2}$, $\frac{1}{2}$, 0;

0

$$0, u, v \qquad 0, -u, v \qquad u, 0, -v \qquad -u, 0, -v \\0, u + \frac{1}{2}, \frac{1}{4} - v \qquad 0, \frac{1}{2} - u, \frac{1}{4} - v \qquad -u, \frac{1}{2}, v + \frac{1}{4} \qquad u, \frac{1}{2}, v + \frac{1}{4} \\+ \left(0, 0, 0; \quad \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right).$$
(12)

Ион урана замещает ион циркония, который в ближайшем окружении имеет восемь ионов кислорода локальная симметрия D_{2d} (см. рисунок).

Структурные данные позволяют вычислить суммы сферических тензоров $\sum_{b} C_{t}^{p}(\Theta_{ab}, \Phi_{ab})$ четных и нечетных рангов *p* по ближайшему окружению иона U^{4+} , необходимые для выполнения расчетов по формулам (5) и (10). Кроме того, эти данные были использованы для определения параметров кристаллического поля в модели обменных зарядов [9,10].

Согласно модели обменных зарядов [9,10], параметры кристаллического поля можно записать в виде

$$B_q^k = -e^2 \langle r^k \rangle \sum_j \rho_j (2\beta_j)^{k+1} \frac{g_j}{R_j^{k+1}} \left(C_q^k(\Theta_j, \varphi_j) \right)^*, \quad (13)$$

где e — заряд электрона; $\langle r^k \rangle$ — среднее значение, вычисленное на волновых функциях электронов; $-eg_j$ и R_j , θ_j , φ_j — соответственно заряд и сферические

координаты иона j. Параметры β_j и ρ_j задаются выражениями

$$\beta_j = \frac{1}{1+\rho_j} \quad \text{if} \quad \rho_j = \rho_0 \left(\frac{R_0}{R_j}\right)^n. \tag{14}$$

Здесь R_0 — наименьшее расстояние R_j , n = 3.5 и $\rho_0 = 0.05$.

Описание штарковской структуры мультиплетов в приближении промежуточного конфигурационного взаимодействия (2) не позволяет получить результаты лучше, чем в одноэлектронном приближении (1).

Применение гамильтониана кристаллического поля в приближении сильного конфигурационного взаимодействия (3) заметно улучшило согласие теории с экспериментом, но для двух групп мультиплетов ${}^{3}H_{5}$, ${}^{3}F_{3}$, ${}^{3}H_{6}$ и ${}^{3}P_{1}$, ${}^{1}I_{6}$ наблюдалось значительное отклонение рассчитанных значений энергии от экспериментальных. Возможной причиной этого является предположение о близком значении энергий возбужденной конфигурации противоположной четности $5f^{N-1}6d$ и конфигурации с переносом заряда. Если эти конфигурации имеют существенно разные энергии, то вместо гамильтониана кристаллического поля (3) следует использовать следующий модифицированный гамильтониан:

$$H_{cf} = \sum_{k,q} \underbrace{\left[B_q^k + \left(\frac{\Delta_{df}^2}{\Delta_{df} - E_j} + \frac{\Delta_{df}^2}{\Delta_{df} - E_{j'}} \right) \tilde{C}_q^k(d) + \left(\frac{\Delta_{cv}^2}{\Delta_{cv} - E_j} + \frac{\Delta_{cv}^2}{\Delta_{cv} - E_{j'}} \right) \tilde{G}_q^k(\text{cov}) \right] C_q^k,}_{\bar{B}_q^k}$$

$$(15)$$

где Δ_{df} — энергия возбужденной конфигурации $5f^{N-1}6d; \Delta_{cv}$ — энергия конфигурации с переносом заряда.

С учетом этого предположения формулы (9) и (10) принимают вид

$$S_{t}^{(1k)p}(d) = |e|S_{t}^{p^{*}}(d) \frac{2k+1}{\sqrt{2p+1}} \begin{cases} 1 & k & p \\ f & d & f \end{cases} \langle f \|C^{p}\|d \rangle$$
$$\times \langle d\|C^{1}\|f\rangle \langle r_{df}\rangle \left[\frac{\Delta_{df}}{\Delta_{df} - E_{j}} + \frac{\Delta_{df}}{\Delta_{df} - E_{j'}}\right], \tag{16}$$
$$S_{t}^{(1k)p}(\text{cov}) = \sum_{b} S^{(1k)p}(b)C_{t}^{1}(\theta_{ab}, \Phi_{ab})$$
$$\times \left[\frac{\Delta_{cv}}{\Delta_{cv} - E_{J}} + \frac{\Delta_{cv}}{\Delta_{cv} - E_{j'}}\right]. \tag{17}$$

Применение гамильтониана (15) позволило значительно улучшить описание штарковской структуры мультиплетов иона U⁴⁺ в ZrSiO₄ (см. табл. 1). Среднеквадратичное отклонение σ уменьшилось на 68% по сравнению с приближением слабого конфигурационного взаимодействия.

Для уменьшения числа варьируемых параметров предполагалось, что оптимальные значения параметров кристаллического поля четной и нечетной симметрии отличаются от соответствующих параметров кристаллического поля, полученных в модели обменных зарядов, на

Журнал технической физики, 2007, том 77, вып. 10

Таблица 1. Сравнение экспериментальных (*E*_{exp}) [11,12] и вычисленных уровней энергии в приближении слабого (Ecalc1) и сильного конфигурационного взаимодействия (E_{calc2}) системы U^{4+} : ZrSiO₄. Все значения даны в сm⁻¹

SLJ	$E_{\exp},$ [11,12]	$E_{\text{calc1}},$ (1)	$E_{calc2},$ (15)	$E_{\rm exp} - E_{\rm calc1}$	$E_{\rm exp} - E_{\rm calc2}$
$^{3}H_{4}$	0	51.7	68.0	-51.7	-68.0
	155.0	103.3	87.0	51.7	68.0
	_	131.7	147.4	_	_
	_	1578.0	1799.8	_	_
	_	1837.4	2039.2	—	—
	—	2091.4	2252.6	_	_
	-	2160.1	2471.9	_	—
${}^{3}F_{1}$	_	3934.1	3827.9	—	-
	_	4465.4	4449.3	_	—
	4736.0	4735.5	4714.0	0.5	22.0
	4853.0	4853.5	4875.0	-0.5	-22.0
${}^{3}H_{5}$	5759.0	5529.1	5721.9	229.9	37.1
	—	5574.5	5843.5	_	_
	6033.0*	5605.1	5845.0	427.9	188.0
	_	6711.0	6579.5	_	—
	6664.0	6851.0	6648.7	-187.0	15.3
	6787.0	7319.5	6844.8	-532.5	-57.8
	7528.0	7429.2	7502.6	98.8	25.4
	7557.0	7786.9	7594.1	-229.9	-37.1
${}^{3}F_{3}$	—	8445.6	8242.8	—	—
	8525.0	8491.9	8487.3	33.1	37.7
	8837.0*	8815.8	8616.1	21.2	220.9
	8894.0	8821.0	8869.8	73.0	24.2
	8935.0	8968.1	8972.7	-33.1	-37.7
${}^{3}F_{4}$	8966.0	9180.0	8944.1	-214.0	21.9
	—	9233.3	9051.5	—	-
	—	9309.7	9162.7	—	_
	9594.0	9678.9	9557.8	-84.9	36.2
	_	9896.1	9954.3	—	—
	-	10 143./	99/8.3	-	
3 * *	10419.0	10 205.0	10 440.9	214.0	-21.9
$^{5}H_{6}$	10938.0	11 255.4	10 999.9	-317.4	-61.9
	-	11 284.5	11 108.4	77.4	05.5
	11 232.0	11 033 8	11 150.5	-//.4	95.5
	119130	12 084 1	11 910 2	-171.1	28
	_	12 392.7	12 235.0	_	
	_	12 600.6	12367.9	-	_
	12755.0	12906.9	12 848.2	-151.9	-93.2
	—	12968.0	13 043.2	_	_
	13 308.0	12990.6	13 246.1	317.4	61.9
${}^{3}P_{0}$	14 629.0	14 629.0	14 629.0	0.0	0.0
${}^{1}D_{2}$	14918.0	14 849.2	14878.7	68.8	39.3
	15254.0^{*}	15 146.3	15 100.2	107.7	153.8
	15 303.0	15316.2	15 347.4	-13.2	-44.4
	15 326.0	15 394.8	15 365.3	-68.8	-39.3
${}^{1}G_{4}$	—	15636.1	15 561.0	—	-
	15 723.0	15647.7	15 738.2	75.3	-15.2
	16 117.0	16 107.3	16 141.1	9.7	-24.1
	—	16 196.5	16 300.6	-	-
	-	16 820.0	16 846.2	-	-
	169730	10 084.3	16 957 8	_75 3	93.2 15.2
	10/10.0			,	· · · · · ·

Журнал технической физики, 2007, том 77, вып. 10

Таблица 1. (продолжение)

SLJ	$E_{exp},$ [11,12]	$E_{\text{calc1}},$ (1)	E_{calc2} , (15)	$E_{\rm exp} - E_{\rm calc1}$	$E_{\rm exp} - E_{\rm calc2}$
${}^{3}P_{1}$	17 928.0	17776.9	17 852.3	151.1	75.7
	18 610.0	18 761.1	18 685.7	-151.1	-75.7
${}^{1}I_{6}$	19 382.0	19 426.9	19 332.0	-44.9	50.0
	_	19 461.8	19 359.8	_	_
	19 522.0	19 477.0	19 572.0	44.9	-50.0
	20870.0^*	21 147.0	21 384.3	-277.0	-514.3
	_	21 262.1	21 486.1	_	_
	21 645.0	21 425.4	21 604.8	219.6	40.2
	_	22 019.3	22 210.0	—	-
	_	22 179.6	22 553.7		—
	_	22 567.1	22963.9	-	—
	-	23 045.3	23 366.4	-	-
${}^{3}P_{2}$	23 104.0	23 167.1	23 095.3	-63.1	8.7
	_	23 304.8	23 414.3	-	-
	_	23 547.0	23 531.0	1	_
	23 718.0	23 654.9	23 726.7	63.1	-8.7
${}^{1}S_{0}$	_	42 431.4	42 489.4	-	-
σ^{**}				165.9	53.1

Примечание. * - уровни, не включенные в процедуру квадратич- $\sigma = \sqrt{\sum_{i=1}^{N} [E_{\exp}(i) - E_{calc}(i)]^2 / (N - N_p)}$ — средненой подгонки;

квадратичное отклонение вычисленных значений энергии от экспериментальных данных, где N — количество экспериментальных данных, - число подгоночных параметров.

множители X_e и X₀ соответственно. Таким образом, в качестве независимых варьируемых параметров выступали X_e , X_0 , $\lambda_{\sigma f}$, $\lambda_{\pi f}$, Δ_{df} и Δ_{cv} . При этом значения варьируемых параметров получились следующими:

1) в приближении слабого конфигурационного взаимодействия $X_e = 0.75;$

2) в приближении сильного конфигурационного взаимодействия $X_e = 0.85; X_0 = 0.60; \lambda_{\sigma f} = -0.0447; \lambda_{\pi f} =$ $= 0.0213; \Delta_{cv} = 8701$ и $\Delta_{df} = 18904$ сm⁻¹.

Полученные таким образом параметры ковалентности по порядку величины хорошо согласуются с параметрами $\lambda_{\sigma f} = -0.05$ и $\lambda_{\pi f} = 0.04$ из [13], полученными для Ln³⁺-F⁻ при описании экспериментов по двойному электронно-ядерному резонансу (ENDOR).

Для наглядного сравнения в табл. 2 представлены параметры кристаллического поля, вычисленные по мо-

Таблица 2. Параметры гамильтониана кристаллического поля, вычисленные по модели обменных зарядов (a), в приближении слабого межконфигурационного взаимодействия (b) и с учетом сильного межконфигурационного взаимодействия (с). Параметры B_q^k в ст⁻¹, S_2^p — безразмерные

	B_{0}^{2}	B_{0}^{4}	B_4^4	B_{0}^{6}	B_{4}^{6}	$S_2^3 \cdot 10^4$	$S_{2}^{5} \cdot 10^{4}$
а	-4728	778	5740	-1243	-537	537	-2128
b	-3546	584	4305	-932	-403	_	_
С	-4032	664	4896	-1060	-458	323	-1279

дели обменных зарядов и с помощью оптимальных значений параметров *X_e* и *X*₀.

Оптимальные значения параметров кристаллического поля, полученные в приближении сильного конфигурационного взаимодействия, находятся в хорошем согласии с параметрами, вычисленными в модели обменных зарядов. Исходя из этого можно сделать вывод, что модель обменных зарядов может быть успешно применена для грубой оценки параметров кристаллического поля.

В процессе описания штарковской структуры с помощью гамильтониана (15) было установлено, что возбужденная конфигурация $5f^{N-1}6d$ наиболее сильно влияет на штарковскую структуру мультиплетов ${}^{3}H_{5}$, ${}^{3}F_{3}$, ${}^{3}H_{6}$, а эффекты ковалентности — на штарковское расщепление мультиплетов ${}^{3}P_{1}$, ${}^{1}I_{6}$. О сильном влиянии возбужденных конфигураций на отдельные группы мултиплетов уже сообщалось в работах [5,14].

На основе параметров S_2^3 , S_2^5 , $\lambda_{\sigma f}$, $\lambda_{\pi f}$ можно вычислить параметры интенсивностей Ω_k . Параметры интенсивностей, согласно (8), (16), (17), будут существенно зависеть от энергии мультиплетов, включенных в переход, поэтому целесообразно вычислить среднее значение параметров Ω_k . Параметры Ω_k оказались равными $\Omega_2 = 2.91 \cdot 10^{-20}$, $\Omega_4 = 22.35 \cdot 10^{-20}$ и $\Omega_6 = 376.60 \cdot 10^{-20}$ сm². Эти значения параметров интенсивностей удовлетворительно согласуются по порядку величины со значениями, приведенными в [15].

Заключение

Установлено, что наилучшее описание штарковского расщепления мультиплетов иона U⁴⁺: ZrSiO₄ достигается с помощью модифицированного гамильтониана кристаллического поля, полученного в приближении сильного конфигурационного взаимодействия. В этом гамильтониане учитывается, что возбужденные конфигурации $5f^{N-1}6d$ и конфигурации с переносом заряда имеют существенно разные энергии.

В результате описания штарковской структуры получены параметры нечетного кристаллического поля и параметры ковалентности. Параметры ковалентности, полученные таким способом, по порядку величины хорошо согласуются с параметрами, полученными из экспериментов по двойному электронно-ядерному резонансу (ENDOR).

На основе параметров ковалентности и параметров нечетного кристаллического поля, полученных из описания штарковской структуры, предсказаны параметры интенсивностей.

Список литературы

- Kornienko A.A., Kaminskii A.A., Dunina E.B. // Phys. Stat. Sol. (b). 1990. Vol. 157. N 1. P. 267–273.
- [2] Корниенко А.А., Дунина Б.Б., Янкевич В.Л. // Письма в ЖТФ. 1994. Т. 20. С. 27–30.

- [3] Thorne J.R.G., Jones M., McCaw C.S., Murdoch K.M., Denning R.G., and Khaidukov N.M. // J. Phys.: Condens. Matter. 1999. Vol. 11. P. 7851–7866.
- [4] Корниенко А.А., Каминский А.А., Дунина Е.Б. // ЖЭТФ. 1999. Т. 116. Вып. 6. С. 2087–2102.
- [5] Faucher M.D., Tanner P.A., Mak C.S.K. // J. Phys. Chem. 2004. Vol. 108. P. 5278–5287.
- [6] Корниенко А.А., Дунина Е.Б. // Опт. и спектр. 2004. Т. 97. № 1. С. 75–82.
- [7] Корниенко А.А., Дунина Е.Б. // Письма в ЖЭТФ. 1994.
 Т. 59. Вып. 6. С. 385–388.
- 8 Wyckoff R.W.G. Crystal structures, London, 1951
- [9] Малкин Б.З. // Спектроскопия кристаллов. Л.: Наука, 1973. С. 30–42.
- [10] Campos A.F., Meijerink A., Donegá C. de Mello, and Malta O.L. // J. Phys. Chem. Solids. 2000. Vol. 61. P. 1489– 1498.
- [11] Richman I., Kisliuk P., and Wong E.Y. // Phys. Rev. 1967. Vol. 155. № 2. P. 262–267.
- Mackey D.J., Runciman W.A., and Vance E.R. // Phys. Rev. B. 1975. Vol. 11. N 1. P. 211–218.
- [13] Anikeenok O.A., Eremin M.V., Falin M.L., Konkin A.L., and Meiklyar V.P. // J. Phys. C: Solid State Phys. 1984. Vol. 17. P. 2813–2823.
- [14] Faucher M.D., Moune O.K. Garsia D., Tanner P. // Phys. Rev. B. 1996. Vol. 53. N 15. P. 9501–9504.
- [15] Дунина Е.Б., Корниенко А.А., Фомичева Л.А. // Вестн. УО «ВГТУ». Вып. 9. Витебск, 2005. С. 119–123.