МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

Учреждение образования «Витебский государственный технологический университет»

РАСЧЕТ И КОНСТРУИРОВАНИЕ ТИПОВЫХ МАШИН ЛЕГКОЙ ПРОМЫШЛЕННОСТИ

Методические указания к практическим занятиям

для студентов специальности 1-36 08 01 «Машины и аппараты легкой, текстильной промышленности и бытового обслуживания» специализации 1-36 08 01 01 «Машины и аппараты легкой промышленности»

Витебск

УДК 67/68:682.5

Расчет и конструирование типовых машин легкой промышленности : методические указания к практическим занятиям для студентов специальности 1-36 08 01 «Машины и аппараты легкой, текстильной промышленности и бытового обслуживания» специализации 1-36 08 01 01 «Машины и аппараты легкой промышленности».

Витебск: Министерство образования Республики Беларусь, УО «ВГТУ», 2010.

Составитель: д.т.н., проф. Сункуев Б.С.

В методических указаниях изложены решения задач по расчету колебаний конструктивных элементов машин, расчету демпфирующих устройств и виброизоляции, расчету производительности машин. Материалы предназначены для студентов при подготовке к практическим занятиям, при выполнении курсового и дипломного проектов.

Одобрено кафедрой «Машины и аппараты легкой промышленности» УО «ВГТУ» 10 ноября 2010 г., протокол № 3.

Рецензент: проф. Локтионов А.В. Редактор: доц. Кириллов А.В.

Рекомендовано к опубликованию редакционно-издательским советом УО «ВГТУ» «9» декабря 2010 г., протокол № 8.

Ответственный за выпуск: Данилова И.А.

Учреждение университет»	образования	«Витебский	государстве	нный техн	ологический
Подписано к	печати	Формат	Уч	 изд. лист.	
	рафическая. Ти				
	на ризогр ный технологич		1	азования	«Витебский
	02330/0494384				
210035, г. Вит	гебск, Московс	кий пр-т, 72.			

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	4
1 РАСЧЕТ КОЛЕБАНИЙ КОНСТРУКТИВНЫХ ЭЛЕМЕНТОВ МАШИН	4
1.1 Расчет частоты собственных колебаний системы с одной степенью	
свободы	4
1.2 Расчет частоты собственных колебаний системы с двумя степенями	
свободы с помощью частотного уравнения	6
1.3 Расчет частоты собственных колебаний системы с двумя степенями	
свободы по методу Донкерли	9
1.4 Расчет частоты собственных колебаний системы с двумя степенями	
свободы по методу Рэлея	12
1.5 Расчет частоты собственных колебаний балки с распределенными	
параметрами	14
1.6 Расчет динамического демпфера	16
1.7 Расчет демпфера вязкого трения	19
1.8 Расчет активной виброизоляции машины	
1.9 Исследование активной виброизоляции	
1.10 Расчет пассивной виброизоляции	
2 РАСЧЕТ ПРОИЗВОДИТЕЛЬНОСТИ МАШИН	
2.1 Расчет теоретической производительности однооперационного	
однопозиционного полуавтомата	28
2.2 Расчет теоретической производительности вышивального	
многоголовочного полуавтомата с единым приводом головок	29
2.3 Расчет теоретической производительности многоголовочного	
вышивального полуавтомата с автономными приводами головок	30
2.4 Расчет теоретической производительности однооперационной	
многопозиционной машины-автомата	32
2.5 Расчет фактической производительности короткошовного швейного	
полуавтомата ПШК-100 (см. условие задачи 2.1)	33
ЛИТЕРАТУРА	
ПРИЛОЖЕНИЕ	37

ВВЕДЕНИЕ

Учебным планом специализации «Машины И аппараты промышленности» предусмотрено проведение практических занятий по «Расчет конструирование типовых легкой дисциплине И машин промышленности» в объеме 34 часов.

В настоящих методических указаниях приведены решения типовых задач по следующим темам: «Расчет колебаний конструктивных элементов машин», «Расчет производительности машин».

Методические указания предназначены для студентов, изучающих дисциплину «Расчет И конструирование типовых машин легкой промышленности», выполняющих курсовой и дипломный проекты специальности 1-36 08 01 01.

1 РАСЧЕТ КОЛЕБАНИЙ КОНСТРУКТИВНЫХ ЭЛЕМЕНТОВ МАШИН

1.1 Расчет частоты собственных колебаний системы с одной степенью свободы

Дана конструкция, содержащая вал на двух подшипниковых опорах и диск, закрепленный на валу (рис. 1.1). При этом: l = 0.2 м; d = 0.01 м; D = 0.1 м; b = 0.03 м, материал вала и диска — сталь 20.

Составить расчетную схему колебательной системы и определить частоту собственных колебаний ω_0 .

Решение

Расчетная схема системы представлена на рис. 1.2 в виде гибкой оси и сосредоточенной массы m, закрепленной посередине оси. Macca определяется по формуле Лунца [1]:

$$m = m_1 + \frac{2}{3}m_2, \tag{1.1}$$

где m_1 – масса диска, кг; m_2 – масса вала, кг.

Массы m_1 и m_2 определяются из формул:

$$m_1 = V_1 \cdot \rho,$$

$$m_2 = V_2 \cdot \rho,$$

где
$$\rho$$
 – плотность стали 20, ρ =7800 кг/м³; V_1 , V_2 – объемы вала и диска, м³.
$$m_1 = \frac{\pi \left(D^2 - d^2\right)}{4} \cdot b \cdot \rho = \frac{\pi \left(0.1^2 - 0.01^2\right)}{4} \cdot 0.03 \cdot 7800 = 1.82 \hat{e} \tilde{a},$$

$$m_2 = \frac{\pi d^2}{4} \cdot l \cdot \rho = 0,122 \hat{e} \tilde{a}.$$



Рисунок 1.1 – Схема колебательной системы с одной степенью свободы: а) конструктивная; б) расчетная

Подставляя m_1 и m_2 в формулу (1.1), получим:

$$m = 1.82\hat{e}\tilde{a} + \frac{2}{3}0.122\hat{e}\tilde{a} = 1.9\hat{e}\tilde{a}$$
.

Представленная на рис. 1.1 колебательная система с одной степенью свободы совершает свободные колебания с круговой частотой ω_0 , определяемой согласно [1] по формуле:

$$\omega_0 = \sqrt{\frac{k}{m}},\tag{1.2}$$

где k - коэффициент упругости оси,

$$k = \frac{48EI}{l^3};\tag{1.3}$$

I – момент инерции сечения вала,

$$I = \frac{\pi d^4}{64} = \frac{\pi \cdot 0.01^4}{64} = 5 \cdot 10^{-10} \, \hat{i}^4;$$

E – модуль упругости стали 20, $E = 2,1 \cdot 10^{11} \frac{\dot{I}}{\dot{i}^{2}}$.

Подставляя полученные значения в приведенные формулы (1.2) и (1.3),

получим:
$$k = \frac{48 \cdot 2,1 \cdot 10^{11} \cdot 5 \cdot 10^{-10}}{64} \frac{\dot{I}}{\dot{i}} = 6,2 \cdot 10^{5} \frac{\dot{I}}{\dot{i}};$$

$$\omega_{0} = \sqrt{\frac{6,2 \cdot 10^{5}}{1.9}} \frac{\dot{\partial} \dot{a} \ddot{a}}{\tilde{n}} = 570 \frac{\dot{\partial} \dot{a} \ddot{a}}{\tilde{n}}.$$

1.2 Расчет частоты собственных колебаний системы с двумя степенями свободы с помощью частотного уравнения

Дана расчетная схема колебательной системы с двумя степенями свободы (рис. 1.2 a) в виде упругой оси с двумя точечными массами $m_1 = 0.5$ кг и $m_2 =$ 0.6 кг. Упругая ось заменяет вал круглого сечения d=0.01 м. Известны размеры: $l_1 = 0,1$ м, $l_2 = 0,25$ м, $l_3 = 0,3$ м. Требуется определить частоты собственных колебаний системы ω_{01} и ω_{02} .

Согласно [1] искомые величины могут быть определены из частотного уравнения по формулам:

$$\omega_{01} = \sqrt{\tilde{o}_1} \,, \tag{1.4}$$

$$\omega_{02} = \sqrt{\tilde{o}_2} \,, \tag{1.5}$$

где
$$\tilde{o}_{1,2} = \frac{\hat{A} \pm \sqrt{\hat{A}^2 - 4\hat{A}}}{2\hat{A}};$$
 (1.6)

$$\hat{A} = m_1 m_2 \left(\delta_{11} \cdot \delta_{12} - \delta_{12}^2 \right); \tag{1.7}$$

$$\hat{A} = m_1 \delta_{11} + m_2 \delta_{22}; \tag{1.8}$$

 δ_{11} – упругое смещение массы m_1 под действием единичной силы, приложенной к m_1 ;

 δ_{22} – упругое смещение массы m_2 под действием единичной силы, приложенной к m_2 ;

 δ_{12} – упругое смещение массы m_1 под действием единичной силы, приложенной к m_2 .

Для определения δ_{II} рассмотрим балку на рис. 1.2 б. Из уравнений равновесия этой балки определим реакции r_1 и r_2 опор:

$$r_1 + r_2 = 1;$$

 $-r_2 \cdot l + 1 \cdot l_1 = 0;$
 $r_2 = \frac{l_1}{l} = \frac{0,1}{0,3} = \frac{1}{3}\hat{I};$ $r_1 = \frac{2}{3}\hat{I}.$

На рис. 1.2 в построена эпюра изгибающих моментов. Перемещение δ_{II} находим по методу Верещагина [2] перемножением эпюры саму на себя:

$$EI\delta_{11} = \left(\frac{0,067 \cdot 0,1 \cdot 2 \cdot 0,067}{2 \cdot 3} + \frac{0,067 \cdot 0,2 \cdot 2 \cdot 0,067}{2 \cdot 3}\right) = 4,49 \cdot 10^{-4} \, \text{fi} \quad {}^{3};$$

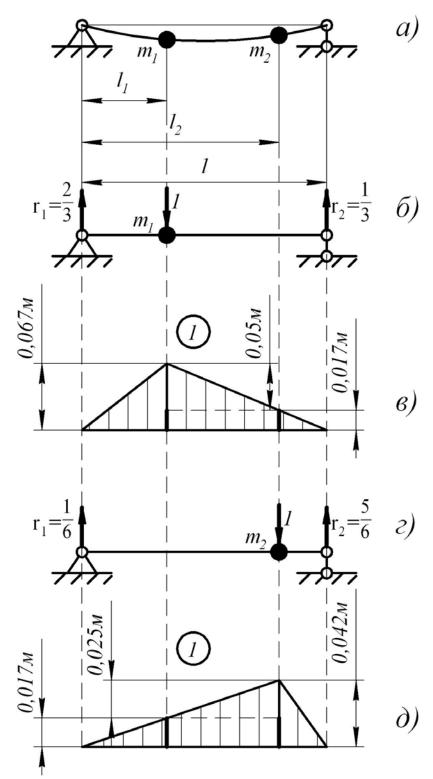


Рисунок 1.2 – Расчет системы с помощью частотных уравнений

- а) расчетная схема системы с двумя степенями свободы;
- б) схема балки с единичной силой, приложенной к m_1 ;
- в) эпюра изгибающих моментов;
- Γ) схема балки с единичной силой, приложенной к m_2 ;
- д) эпюра изгибающих моментов

$$\delta_{11} = \frac{4,49 \cdot 10^{-4}}{2,1 \cdot 10^{11} \cdot \frac{\pi \cdot 10^{-8}}{64}} = \frac{4,49 \cdot 10^{-4}}{103} \hat{i} = 4,36 \cdot 10^{-6} \hat{i}.$$

Для определения δ_{22} рассмотрим балку на рис. 1.2 г. Из уравнений равновесия этой балки определим реакции опор:

$$r_1 + r_2 = 1;$$

$$-r_2 \cdot l + 1 \cdot l_2 = 0;$$

$$r_2 = \frac{l_2}{l} = \frac{0.25}{0.3} = \frac{5}{6} \hat{I}; \qquad r_1 = \frac{1}{6} \hat{I}.$$

На рис. 1.2 д показана эпюра изгибающих моментов балки. Перемещение δ_{22} находим по методу Верещагина перемножением эпюры саму на себя:

$$EI\delta_{22} = \left(\frac{0.042 \cdot 0.25 \cdot 2 \cdot 0.042}{2 \cdot 3} + \frac{0.042 \cdot 0.05 \cdot 2 \cdot 0.042}{2 \cdot 3}\right) = 1.74 \cdot 10^{-4} \, \text{ fi} \quad {}^{3};$$

$$\delta_{22} = \frac{1.74 \cdot 10^{-4}}{103} \, \hat{\imath} \quad = 1.69 \cdot 10^{-6} \, \frac{\hat{I}}{\hat{\imath}}.$$

Перемещение δ_{12} определим перемножением эпюр, построенных на рис. 1.2 в и 1.2 д по методу Верещагина. Разобьем эпюры на 4 участка, содержащих простейшие фигуры (треугольники и прямоугольники):

$$103 \cdot \delta_{12} = \begin{bmatrix} \frac{0,067 \cdot 0,1 \cdot 2 \cdot 0,017}{2 \cdot 3} + \frac{0,05 \cdot 0,15 \left(0,017 + \frac{0,025}{3}\right)}{2} \\ + 0,017 \cdot 0,15 \left(0,017 + \frac{0,025}{2}\right) + \frac{0,017 \cdot 0,05 \cdot 2 \cdot 0,042}{2 \cdot 3} \end{bmatrix} \hat{i}^{3} = 2,2 \cdot 10^{-4} \hat{i}^{3};$$

$$\delta_{12} = \frac{2,13 \cdot 10^{-4}}{103} \frac{\hat{i}}{\hat{I}} = 2,13 \cdot 10^{-6} \frac{\hat{i}}{\hat{I}}.$$

Подставляя полученные значения δ_{11} , δ_{22} и δ_{13} в формулы (1.4)–(1.8), получим:

$$\begin{split} \hat{A} &= 0.5 \cdot 0.6 \left(4.36 \cdot 1.69 - 2.13^{2} \right) \cdot 10^{-12} \tilde{n}^{4} = 0.85 \cdot 10^{-12} \tilde{n}^{4} ; \\ \hat{A} &= \left(0.5 \cdot 4.36 + 0.6 \cdot 1.69 \right) 10^{-6} \tilde{n}^{2} = 3.194 \cdot 10^{-6} \tilde{n}^{2} . \\ \tilde{o}_{1,2} &= \frac{\left(3.194 \pm 2.61 \right) 10^{-6}}{1.7 \cdot 10^{-12}} \tilde{n}^{-2} \\ \tilde{o}_{1} &= \frac{\left(3.194 + 2.61 \right) 10^{-6}}{1.7 \cdot 10^{-12}} \tilde{n}^{-2} = 3.41 \cdot 10^{6} \tilde{n}^{-2} ; \\ \tilde{o}_{1} &= \frac{\left(3.194 - 2.61 \right) 10^{-6}}{1.7 \cdot 10^{-12}} \tilde{n}^{-2} = 0.343 \cdot 10^{6} \tilde{n}^{-2} ; \end{split}$$

$$\omega_{01} = \sqrt{3,41 \cdot 10^{6}} \, \tilde{n}^{-1} = 1847 \, \frac{\partial \dot{a} \ddot{a}}{\tilde{n}};$$

$$\omega_{02} = \sqrt{0,343 \cdot 10^{6}} \, \tilde{n}^{-1} = 586 \, \frac{\partial \dot{a} \ddot{a}}{\tilde{n}}.$$

1.3 Расчет частоты собственных колебаний системы с двумя степенями свободы по методу Донкерли

Для расчетной схемы колебаний с 2-мя степенями свободы, приведенной в условиях задачи 1.2 (см. рис. 1.2), определить приближенным методом Донкерли низшую частоту ω_{01} собственных колебаний. Сравнить с низшей частотой, полученной при решении задачи 1.2 с помощью частотного уравнения.

Согласно [1] низшая частота собственных колебаний определяется по методу Донкерли из формулы

$$\frac{1}{\omega_{01}^2} = \frac{y_1 + y_2}{q},\tag{1.9}$$

где y_I – упругое смещение массы m_1 (рис. 1.3 а) под действием силы веса этой массы,

 y_2 – упругое смещение массы m_2 (см. рис. 1.3 а) под действием силы веса массы m_2 .

Определим y_I методом Верещагина. Для этого рассмотрим балку, находящуюся под действием силы веса $m_1g=0.5\cdot 9.81\hat{e}\tilde{a}=4.9\hat{I}$ (рис. 1.3 б), и балку, находящуюся под действием единичной силы, приложенной к m_1 (рис. 1.3 г). Построим эпюры изгибающих моментов.

Реакции опор первой балки (см. рис. 1.3 б) определим из уравнений равновесия:

$$R_1 + R_2 = 4.9\hat{I}$$
;
 $R_2 \cdot 0.3 - 4.9 \cdot 0.1 = 0$,

откуда:

$$R_2 = 4.9 \cdot \frac{0.1}{0.3} = 1.63 \hat{I}$$
;
 $R_1 = 4.9 \hat{I} - 1.63 \hat{I} = 3.27 \hat{I}$.

Эпюра изгибающих моментов первой балки построена на рис. 1.3 в.

Реакции опор второй балки (рис. 1.3 б) определим из уравнений равновесия:

$$r_1 + r_2 = 1;$$

 $r_2 \cdot 0.3 - 1 \cdot 0.1 = 0,$

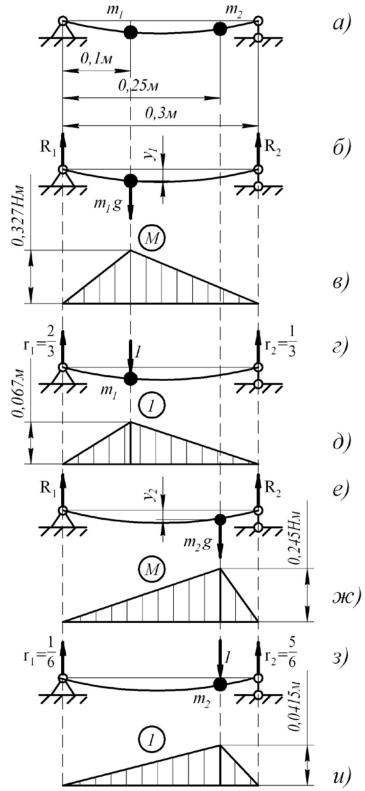


Рисунок 1.3 – Расчет системы по методу Донкерли:

а) расчетная схема балки с двумя степенями свободы; б) расчетная схема балки под действием силы m_1g ; в) эпюра изгибающих моментов; г) расчетная схема балки под действием единичной силы; д) эпюра изгибающих моментов; е) расчетная схема балки под действием силы m_2g ; ж) эпюра изгибающих моментов; з) расчетная схема балки под действием единичной силы; и) эпюра изгибающих моментов

откуда:

$$r_2 = \frac{1}{3}$$
;
 $r_1 = \frac{2}{3}$.

Эпюра изгибающих моментов второй балки построена на рис. 1.3д. Перемещение y_I определим перемножением эпюр:

$$EIy_1 = \frac{0,327 \cdot 0,1 \cdot 2 \cdot 0,067}{2 \cdot 3} + \frac{0,327 \cdot 0,2 \cdot 2 \cdot 0,067}{2 \cdot 3} = 0,327 \cdot 0,067 \cdot 0,1 = 21,9 \cdot 10^{-4} \, \hat{h} \quad ^{3};$$
$$y_1 = \frac{21,9 \cdot 10^{-4}}{102 \cdot 9} = 21,28 \cdot 10^{-6} \, \hat{\iota} .$$

Определим y_2 методом Верещагина. Для этого рассмотрим балки, находящиеся под действием силы веса $m_2g = 5,89$ H (рис. 1.3 e) и под действием единичной силы, приложенной к m_2 (рис. 1.3 з).

Реакции опор первой балки (см. рис. 1.3 е) определим из уравнений равновесия:

$$R_1 + R_2 = 5.89 \text{ H};$$

 $R_2 \cdot 0.3 - 5.89 \cdot 0.25 = 0.$

откуда:

$$R_2 = 5.89 \cdot \frac{5}{6} = 4.9 \hat{I}$$
;
 $R_1 = 5.89 - 4.9 = 0.99 \hat{I}$.

Эпюра изгибающих моментов первой балки построена на рис. 1.3 ж.

Реакции опор второй балки (см. рис. 1.3 з) определим из уравнений равновесия:

$$r_1 + r_2 = 1;$$

 $r_2 \cdot 0.3 - 1 \cdot 0.25 = 0,$

откуда:

$$r_2 = \frac{5}{6};$$
$$r_1 = \frac{1}{6}.$$

Эпюра изгибающих моментов второй балки построена на рис. 1.3 и. Перемещение y_2 определим перемножением эпюр:

$$EIy_2 = \frac{0.245 \cdot 0.25 \cdot 2 \cdot 0.0415}{2 \cdot 3} + \frac{0.245 \cdot 0.05 \cdot 2 \cdot 0.0415}{2 \cdot 3} = 0.245 \cdot 0.0415 \cdot 0.1 = 10.2 \cdot 10^{-4} \, \text{fi} \quad {}^{3};$$

$$y_2 = \frac{10.2 \cdot 10^{-4}}{102.9} = 9.88 \cdot 10^{-4} \hat{l}i^{-3}.$$

Из формулы (1.9) определим ω_{01} :

$$\omega_{01} = \sqrt{\frac{q}{y_1 + y_2}} = \sqrt{\frac{9.81 \cdot 10^6}{21.28 + 9.88}} = 561 \frac{\eth \dot{a} \ddot{a}}{\tilde{n}}.$$

При определении ω_{01} из частотного уравнения получено $\omega_{01} = 586 \frac{\delta \dot{a} \ddot{a}}{\tilde{n}}$. Расхождение результатов составило:

$$\Delta\omega = \frac{561 - 586}{586} \cdot 100\% = -4,47\%$$
.

1.4 Расчет частоты собственных колебаний системы с двумя степенями свободы по методу Рэлея

Для расчетной схемы колебаний с 2-мя степенями свободы, приведенной в условиях задачи 1.2 (см. рис. 1.2), определить приближенным методом Рэлея низшую частоту ω_{01} собственных колебаний. Сравнить с низшей частотой, полученной при решении задачи 1.2, с помощью частотного уравнения. Сравнить результаты вычислений ω_{01} в задачах 1.2 и 1.4.

Согласно [1] низшая частота собственных колебаний по методу Рэлея определяется из формулы

$$\omega_{01} = \sqrt{\frac{g(m_1 \cdot y_1 + m_2 y_2)}{(m_1 \cdot y_1^2 + m_2 y_2^2)}},$$
(1.10)

где y_{I} – упругое смещение массы m_{1} под действием сил веса $m_{1}g=4{,}9\acute{I}$ и $m_{2}g=5{,}9\acute{I}$;

 y_2 – упругое смещение массы m_2 под действием сил веса $m_1 g$ и $m_2 g$.

Определим y_1 методом Верещагина. Для этого построим эпюры изгибающих моментов балки под действием сил веса m_1g и m_2g (рис. 1.4 а) и под действием единичной силы, приложенной к m_1 (рис. 1.3 д).

Для построения первой эпюры определим реакции R_1 и R_2 в опорах балки (рис. 1.4 а) из уравнений равновесия:

$$R_1 + R_2 = 5.9 + 4.9 = 10.8 \hat{I}$$
;
 $R_2 \cdot 0.3 - 5.9 \cdot 0.25 - 4.9 \cdot 0.1 = 0$,

откуда: $R_2 = \frac{5,9 \cdot 0,25 + 4,9 \cdot 0,1}{0.3} = 6,55\hat{I}$;

$$R_1 = 10.8 - 6.55 = 4.25 \hat{I}$$

Эпюра изгибающих моментов построена на рис. 1.4 б.

Эпюра изгибающих моментов балки под действием единичной силы, приложенной к m_1 , имеется на рис. 1.3 д. Для удобства пользования она перенесена на рис. 1.4 в.

Перемещение y_1 определим перемножением эпюр, представленных на рис. 1.4 б и 1.4 в:

EIy₁ =
$$\frac{0.43 \cdot 0.1 \cdot 2 \cdot 0.067}{2 \cdot 3} + \frac{0.1 \cdot 0.15 \left(0.017 + \frac{2}{3} \cdot 0.05\right)}{2} + 0.327 \cdot 0.15 \left(0.017 + \frac{0.050}{2}\right) + \frac{0.327 \cdot 0.05 \cdot 2 \cdot 0.017}{2 \cdot 3} = 33.62 \cdot 10^{-4} \text{ ft}^{-3}$$
;

$$y_1 = \frac{33.62 \cdot 10^{-4}}{102.9} = 32.7 \cdot 10^{-6} \text{ i} \cdot \frac{0.05M}{2}$$

R₁

R₂

0.130

R₃

R₄

0.150

0.25M

0.05M

R₄

0.150

0.05M

R₄

0.150

0.05M

Рисунок 1.4 – Расчет системы по методу Рэлея: а) расчетная схема балки; б, в, г) эпюры изгибающих моментов

г)

Для определения y_2 методом Верещагина перемножим эпюры изгибающих моментов балки под действием сил веса m_1g и m_2g (см. рис. 1.4 б) и балки под действием единичной силы, приложенной к m_2 (см. рис. 1.3и и рис. 1.4 г).

$$\begin{split} EIy_2 &= \frac{0.43 \cdot 0.1 \cdot 2 \cdot 0.017}{2 \cdot 3} + \frac{0.1 \cdot 0.15 \left(0.017 + \frac{1}{3} \cdot 0.025 \right)}{2} + 0.327 \cdot 0.15 \left(0.017 + \frac{0.025}{2} \right) + \\ &+ \frac{0.327 \cdot 0.05 \cdot 2 \cdot 0.0415}{2 \cdot 3} = 20.96 \cdot 10^{-4} \, \text{fi}^{-3} \, ; \\ &y_2 = \frac{20.96 \cdot 10^{-4}}{102.9} = 20.37 \cdot 10^{-6} \, \text{i} \, . \end{split}$$

Подставив y_1 и y_2 в формулу (1.10), получим:

$$\omega_{01} = \sqrt{\frac{9,81 \cdot (0,5 \cdot 32,7 + 0,6 \cdot 20,37)}{(0,5 \cdot 32,7^2 + 0,6 \cdot 20,37^2)}} = 598 \frac{\eth \ddot{a}\ddot{a}}{\tilde{n}}.$$

Из частотного уравнения получено $\omega_{01} = 586 \frac{\partial \dot{a}\ddot{a}}{\tilde{n}}$. Расхождение результатов составило:

$$\Delta\omega = \frac{598 - 586}{586} \cdot 100\% = 2,05\%$$
.

1.5 Расчет частоты собственных колебаний балки с распределенными параметрами

Определить низшую частоту собственных колебаний рукава швейной машины (рис. 1.5). На рис. 1.5 а показана конструктивная схема корпуса швейной машины, состоящего из рукава 1 и колонки 2. На рис. 1.5 б рукав представлен в виде балки полого прямоугольного сечения, а на рис. 1.5 в приведена расчетная схема балки с заделкой на конце.

Исходные данные для расчета: $l=0.24\,\mathrm{m}$; $\hat{A}=0.1\,\mathrm{m}$; $H=0.12\,\mathrm{m}$; $\delta=0.007\,\mathrm{m}$; материал рукава СЧ-28.

Согласно [1] низшая частота собственных колебаний последней определяется из формулы

$$\omega_{01} = \frac{3.52}{l^2} \sqrt{\frac{EI}{q}},\tag{1.11}$$

где E – модуль упругости серого чугуна, $E = 1.15 \cdot 10^{11} \frac{\dot{I}}{\dot{I}^2}$;

q – масса, приходящаяся на единицу длины балки, $q = \frac{m}{l} \frac{\hat{e}\tilde{a}}{\hat{i}}$;

I – момент инерции сечения балки.

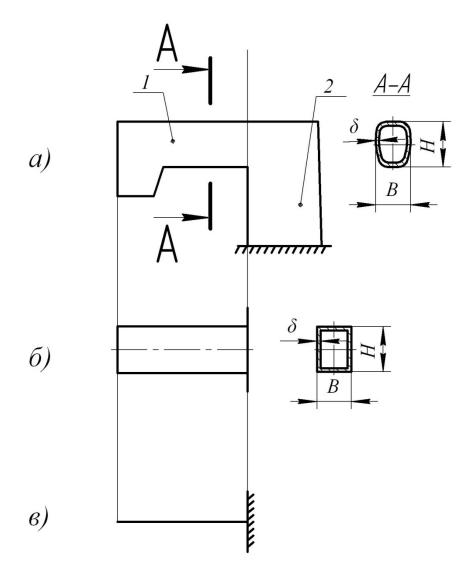


Рисунок 1.5 – Расчет балки с распределенными параметрами:

- а) конструктивная схема рукава швейной машины;
- б) конструктивная схема балки; в) расчетная схема балки

Определим момент инерции сечения балки:
$$I = \frac{BH^3}{12} - \frac{\left(B - 2\delta\right)\!\left(H - 2\delta\right)^3}{12} = \frac{0,\!1\cdot 0,\!12^3}{12} - \frac{0,\!086\cdot 0,\!106^3}{12} = 0,\!587\cdot 10^{-5}\,\grave{\iota}^{-4}.$$

Определим удельную массу балки:

$$q = \frac{m}{l} = \frac{F \cdot l \cdot \rho}{l} = F \cdot \rho,$$

где m – масса балки;

F – площадь сечения балки;

 ρ – плотность серого чугуна, ρ = 7000 кг/м³.

$$q = [BH - (B - 2\delta)(H - 2\delta)] \cdot \rho = (0.1 \cdot 0.12 - 0.086 \cdot 0.106) \cdot 7600 = 20.188 \frac{\hat{e}\tilde{a}}{\hat{i}}.$$

Подставляя в формулу (1.11) значения l, E, F, q, получим:

$$\omega_{01} = \frac{3,52}{0,24^2} \sqrt{\frac{1,15 \cdot 10^{11} \cdot 0,587 \cdot 10^{-5}}{20,188}} = 11175 \frac{\partial \dot{a}\ddot{a}}{\tilde{n}}.$$

1.6 Расчет динамического демпфера

На рисунке 1.6 а приведена конструктивная схема диска 1, закрепленного на валу 2, установленном на двух подшипниках. Вал вращается с угловой скоростью Ω . Требуется проверить условие резонанса основной системы u, в случае резонанса, установить динамический демпфер в виде кольца 3, охватывающего диск 1, u фигурной пластинчатой пружины 4, установленной между диском 1 и кольцом 3. Рассчитать массу u размеры кольца u пружины.

Исходные данные для расчета: $D=0.2\,\mathrm{m};\ d=0.01\,\mathrm{m};\ l=0.3\,\mathrm{m};\ b=0.01\,\mathrm{m};$ $b_1=0.005\,\mathrm{m}$; $h=0.01\,\mathrm{m}$; частота вращения вала $n=2700\,\mathrm{of/muh}$.

Расчет частоты собственных колебаний основной системы проводим аналогично расчету системы, приведенной в задаче 1.1 (см. рис. 1.1 а, 1.1 б).

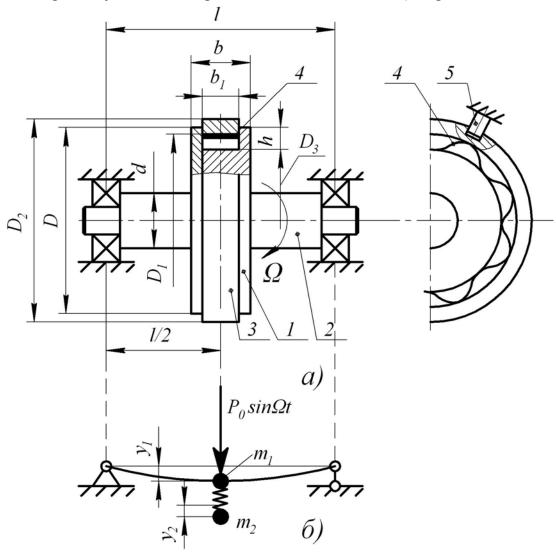


Рисунок 1.6 – Схемы системы с динамическим демпфером: а) конструктивная, б) расчетная

Частоту собственных колебаний основной системы определим по формуле (1.2).

Сначала определим массу m_1 (см. рис. 1.6 б):

$$m_1 = m_{\ddot{a}} + \frac{2}{3}m_b,$$

где $m_{\ddot{a}}$ — масса диска 1; m_b — масса вала 2.

$$m_{\tilde{a}} = \left[\frac{\pi D^{2}}{4}(b - b_{1}) + \frac{\pi (D - 2h)^{2}}{4}b_{1} - \frac{\pi d^{2}}{4}b\right] \cdot \rho =$$

$$= \left[\frac{\pi \cdot 0.2^{2} \cdot 0.005}{4} + \frac{\pi \cdot 0.18^{2} \cdot 0.005^{2}}{4} - \frac{\pi \cdot 0.001^{2} \cdot 0.01}{4}\right] \cdot 7800 = 2.167 \hat{e}\tilde{a};$$

$$m_b = \frac{\pi d^2 \cdot l \cdot \rho}{4} = \frac{\pi \cdot 0.01^2 \cdot 0.3 \cdot 7800}{4} = 0.184 \hat{e}\tilde{a};$$

$$m_1 = 2.167 + \frac{2}{3} \cdot 0.184 = 2.289 \hat{e}\tilde{a}.$$

Коэффициент упругой силы вала определим по формуле

$$k_1 = \frac{48EI}{l^3},$$

$$I = \frac{\pi d^2}{64} = \frac{\pi \cdot 0.01^2}{64} = 4.9 \cdot 10^{-10} \,\hat{\imath}^4.$$

Подставив I в формулу для k_1 , получим:

$$k_1 = \frac{48 \cdot 2,1 \cdot 10^{11} \cdot 4,9 \cdot 10^{-10}}{0.3^3} = 18,3 \cdot 10^4 \frac{\hat{I}}{\hat{i}}.$$

Подставив значения k_1 и m_1 в формулу для ω_1 , получим:

$$\omega_1 = \sqrt{\frac{18,3 \cdot 10^4}{2,289}} = 282,7 \frac{\eth \dot{a} \ddot{a}}{\tilde{n}}.$$

Определим угловую скорость вала $\Omega = \frac{\pi \cdot \omega}{30} = 282,8 \frac{\partial \dot{a}\ddot{a}}{\tilde{n}}$.

Так как $\omega_1 = \Omega$, то имеет место резонансное состояние.

Для устранения резонанса основной системы установим динамический демпфер в виде кольца 3, вставленного в кольцевой паз диска 2, и пластинчатой фигурной пружины 4, расположенной между диском 1 и кольцом 4. Кольцо 3 удерживается от вращения пальцем 5, входящим в радиальный вырез в кольце.

Зададимся массой m_2 кольца 3:

$$m_2 = 0.5 m_1 = 0.5 \cdot 2.289 \hat{e}\tilde{a} = 1.144 \hat{e}\tilde{a}.$$

Зададимся $D_1 = D - 0.005 = 0.2 - 0.005 = 0.195 i$.

Из формулы

$$m_2 = \frac{\pi (D_2^2 - D_1^2)}{4} b_1 \cdot \rho$$

определим:

$$D_2 = \sqrt{D_1^2 + \frac{4m_2}{\pi \cdot b_1 \cdot \rho}} = \sqrt{0.195^2 + \frac{4 \cdot 1.142}{\pi \cdot 0.005 \cdot 7800}} = 0.274 \,i.$$

Определим эквивалентную жесткость пружины k_2 :

$$k_2 = m_2 \cdot \omega_2^2,$$

где ω_2 согласно [1] равно Ω .

$$k_2 = 1,144 \cdot 282,5^2 = 91298 \frac{\hat{I}}{\hat{i}}$$
.

Из формулы (П.6) (см. приложение) определим коэффициент упругости $k_{\acute{Y}}$ элемента пластинчатой пружины (см. рис. П. 2):

$$k_{\acute{Y}} = \frac{k_2}{1.5} = \frac{91298}{1.5} = 60866 \frac{\acute{I}}{\grave{i}}.$$

Зададимся

$$D_3 = D_1 - 2h = 0.195 - 2 \cdot 0.01 = 0.175 \,i \ .$$

Из формулы (П.9) определим длину элемента:

$$l_3 = \alpha \cdot \frac{D_3}{2} = 0.523 \cdot \frac{0.175}{2} = 0.046 i$$
.

Из формулы (П.7) определим:

$$I_3 = \frac{k_{\acute{Y}} \cdot l_3^3}{48E} = \frac{60866 \cdot 0,046^3}{48 \cdot 2,1 \cdot 10^{11}} = 0,59 \cdot 10^{-12} \, \mathring{\imath}^4.$$

Зададимся $b_3 = 0.005$ ì.

Из формулы (П.8) определим:

$$h_3 = \sqrt[3]{\frac{12I_3}{b_3}} = \sqrt[3]{1416} = 11.2 \cdot 10^{-4} \,i$$
.

Принимаем $h_3 = 1,1ii$.

Система с динамическим демпфером имеет две степени свободы. Определим частоты собственных колебаний этой системы.

Из [1] имеем частотное уравнение:

$$\omega_0^4 - b\omega_0^2 + c = 0, (1.12)$$

где
$$b = \omega_2^2 + \omega_1^2 - \frac{m_2}{m_1} \omega_2^2$$
;
$$c = \omega_1^2 \cdot \omega_2^2.$$

Имея ввиду, что
$$\omega_2=\Omega=\omega_1$$
; $\frac{m_2}{m_1}=0$,5, получим:
$$b=2\omega_1^2+0.5\omega_1^2=2.5\omega_1^2;$$
 $c=\omega_1^4.$

Обозначим в (1.12) $\omega_0^2 = \tilde{o}$, тогда

$$x^2 - bx + c = 0.$$

Решая квадратное уравнение, получим:

$$x_{1,2} = \frac{b}{2} \pm \sqrt{\frac{b^2}{4} - c} = \omega_1^2 (1,25 \pm 0,75).$$

$$x_1 = 2\omega_1^2; \qquad x_2 = 0,5\omega_1^2.$$

$$\omega_{01} = \sqrt{x_1} = 1,41\omega_1 = 398,9 \frac{\partial \dot{a}\ddot{a}}{\tilde{n}};$$

$$\omega_{02} = \sqrt{x_2} = 0,71\omega_1 = 200,8 \frac{\partial \dot{a}\ddot{a}}{\tilde{n}}.$$

1.7 Расчет демпфера вязкого трения

На рис. 1.7 показана схема станины 1 машины, установленной на упругие элементы 2, 3. Центр массы S колеблется под действием центробежной силы ротора $P_0 \sin \Omega t$, где Ω – угловая скорость ротора.

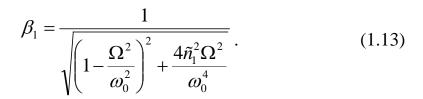
Для уменьшения амплитуды колебаний к станине присоединен демпфер вязкого трения в виде штока 4 гидроцилиндра 5. Полости гидроцилиндра заполнены маслом и сообщаются посредством трубопровода 6. Требуется рассчитать демпфер из условия уменьшения амплитуды колебаний в 2 раза.

Исходные данные: масса станины m = 200 кг; суммарный коэффициент жесткости пружин 2 и 3 $k=10^6\frac{\acute{I}}{\grave{i}}$; $P_0=2000$ H; $\Omega=50\frac{\eth\grave{a}\ddot{a}}{\~{n}}$; коэффициент c_I , характеризующий силу затухания колебаний, действующую со стороны пружин 2 и 3, равен: $c_I=0.125\omega_0$.

Уравнение вынужденных колебаний станины имеет вид [1]:

$$m\ddot{y} + b\dot{y} + ky = P_0 \sin \Omega t$$
.

Динамический коэффициент амплитуды колебаний без учета демпфирования согласно [1] определяется из формулы:



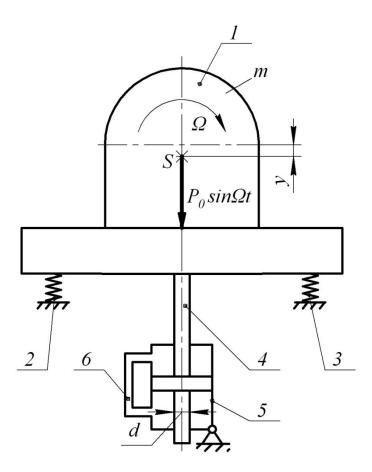


Рисунок 1.7 – Схема демпфера вязкого трения: 1– станина; 2,3 – упругие элементы; 4 – шток; 5 – гидроцилиндр; 6 – трубопровод

Частоту собственных колебаний ω_0 без учета демпфера определим из формулы

$$\omega_0 = \sqrt{\frac{k}{m}} = \sqrt{\frac{10^6}{200}} = 70.7 \frac{\partial \dot{a}\ddot{a}}{\tilde{n}}.$$

Коэффициент c_1 определим при известном ω_0 :

$$\tilde{n}_1 = 0.125\omega_0 = 0.125 \cdot 70.7 = 8.84 \frac{\partial \tilde{a}\tilde{a}}{\tilde{n}}.$$

Подставив значения ω_0 , Ω , c_I в (1.13), получим:

$$\beta_1 = \frac{1}{\sqrt{\left(1 - \frac{50^2}{70.7^2}\right)^2 + \frac{4 \cdot 8.84^2 \cdot 50^2}{70.7^4}}} = 1,886.$$

Для уменьшения амплитуды колебаний в 2 раза необходимо уменьшить динамический коэффициент амплитуды в 2 раза:

$$\beta = \frac{\beta_1}{2} = \frac{1,886}{2} = 0,943$$
.

Из формулы (1.13) определим требуемый коэффициент c силы, препятствующий колебанию, с учетом демпфера вязкого трения:

$$\tilde{n} = \frac{\omega_0^2}{2\Omega} \sqrt{\frac{1}{\beta^2} - \left(1 - \frac{\Omega^2}{\omega_0^2}\right)^2} = \frac{70.7^2}{2 \cdot 50} \sqrt{\frac{1}{0.943^2} - \left(1 - \frac{50^2}{70.7^2}\right)^2} = 46.73 \frac{\delta \tilde{a} \ddot{a}}{\tilde{n}}.$$

Коэффициент силы вязкого трения b в уравнении (1.12) определяется из формулы [1]

$$b = 2mc = 2 \cdot 200 \cdot 46,73 = 18629 \frac{\tilde{I}\tilde{n}}{\tilde{i}}$$
.

Этот коэффициент складывается из двух составляющих:

$$b = b_1 + b_2, (1.14)$$

$$_{\Gamma Де} b_1 = 2m\tilde{n}_1, \tag{1.15}$$

 $b_2=2m\tilde{n}_2,$

 c_1 – коэффициент силы затухания пружин 2, 3;

 c_2 – коэффициент силы затухания демпфера.

Из (1.15) определим b_1 :

$$b_1 = 2 \cdot 200 \cdot 8,84 = 3536 \frac{\tilde{l}\tilde{n}}{\tilde{i}}.$$

Из (1.14) определим b_2 :

$$b_2 = 18629 - 3536 = 15156 \frac{\tilde{l}\tilde{n}}{\tilde{i}}.$$

Согласно [1] определим коэффициент силы вязкого трения со стороны гидравлического демпфера:

$$b_2 = k_{\delta\delta} \cdot F^2, \tag{1.16}$$

где $k_{\delta\delta}$ – коэффициент потерь напора на трение b в трубопроводе 6 (см. рис. 1.7);

F – площадь сечения гидроцилиндра 5 (см. рис. 1.7).

 $k_{\delta\delta}$ находим из формулы

$$k_{\delta\delta} = \frac{41 \cdot v \cdot l \cdot \rho}{d_{\delta\delta}^4},$$

где V – коэффициент кинематической вязкости масла, для масла

«Индустриальное 60» $v = 60 \cdot 10^{-6} \frac{\dot{i}^2}{\tilde{n}}$;

l – длина трубопровода 6 (см. рис. 1.7), зададимся l = 1,5 м;

$$\rho$$
 – плотность масла, $\rho = 900 \frac{\hat{e}\tilde{a}}{\hat{i}^3}$;

 d_{mp} – диаметр трубопровода, выберем $d_{mp} = 0,006$ м.

Подставив указанные значения в формулу для $k_{\delta\delta}$, получим:

$$k_{\delta\delta} = \frac{41 \cdot 60 \cdot 10^{-6} \cdot 1,5 \cdot 900}{\left(6 \cdot 10^{-3}\right)^4} = 25,625 \cdot 10^8 \frac{Hc}{i^3}.$$

Из формулы (1.16) определим F:

$$F = \sqrt{\frac{b_2}{k_{\delta\delta}}} = 10^{-4} \sqrt{\frac{15156}{25,625}} = 24,32 \cdot 10^{-4} \, \mathring{\iota}^{2}.$$

При известном F определим диаметр цилиндра:

$$D = \sqrt{d^2 + \frac{4F}{\pi}}.$$

Принимая $d = 10^{-2}$ м, определим D:

$$D = \sqrt{10^{-4} + \frac{4 \cdot 24,32 \cdot 10^{-4}}{\pi}} = 5,65 \cdot 10^{-2} \,\hat{\imath} = 56,5 \,\hat{\imath}\hat{\imath}$$

Согласно ГОСТ 355-80 принимаем D = 60 мм.

1.8 Расчет активной виброизоляции машины

На рис. 1.8 а показана схема машины с неуравновешенным ротором 1 и станиной 2, установленной через упругие прокладки 3 на основание 4.

Исходные данные: масса ротора $m_1 = 50$ кг, масса станины $m_2 = 150$ кг, дисбаланс ротора, т.е. смещение центра масс ротора относительно оси вращения $e = 0.5 \cdot 10^{-3}$ м; частота вращения ротора n = 2000 об/мин.

Требуется определить параметры виброизоляции и амплитуду колебаний станины.

Согласно [1] виброизоляция эффективна, если динамический коэффициент β амплитуды вынужденных колебаний системы меньше 1. Зададимся $\beta=0,2$. При таком значении β нагрузка, передаваемая на основание, в 5 раз меньше возмущающей силы $P_0 \sin \Omega t$.

Для незатухающих колебаний величина β определяется из формулы

$$\beta = \frac{1}{\frac{\Omega^2}{\omega_0^2} - 1},\tag{1.17}$$

где Ω – частота возмущающей силы $P_0 \sin \Omega t$;

 ω_0 – частота собственных колебаний системы.

Из (1.17) имеем:

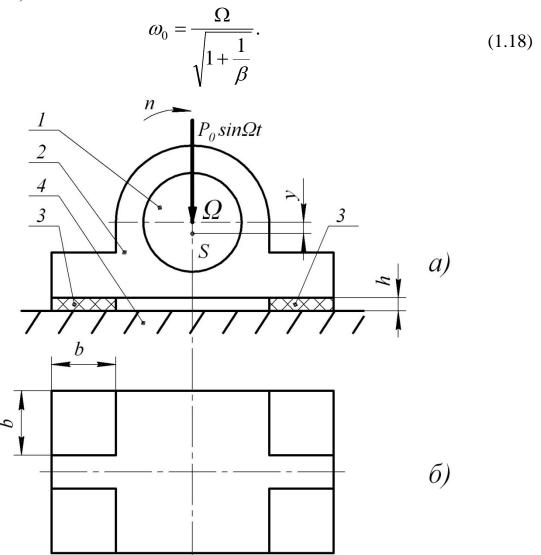


Рисунок 1.8 – Схема активной виброизоляции: 1 – ротор; 2 – станина; 3 – упругие прокладки; 4 – основание

Определим:

$$\Omega = \frac{\pi n}{30} = \frac{\pi \cdot 2000}{30} = 209.4 \frac{\eth \dot{a} \ddot{a}}{\tilde{n}}.$$

Тогда из (1.18) определим:

$$\omega_0 = \frac{209,4}{\sqrt{1 + \frac{1}{0,2}}} = 85,5 \frac{\partial \dot{a} \ddot{a}}{\tilde{n}}.$$

Для упругой прокладки согласно [1] податливость δ определится из формулы

$$\omega_0^2 = \frac{1}{m\delta},\tag{1.19}$$

где m — масса колеблющейся машины.

Определим $m = m_1 + m_2 = 200 \hat{e} \tilde{a}$.

Подставив ω_0 и δ в формулу (1.19), получим:

$$\delta = \frac{1}{m \cdot \omega_0^2} = \frac{1}{200 \cdot 85.5^2} = 6.84 \cdot 10^{-7} \frac{\acute{I}}{\grave{\iota}}.$$

Для упругой прокладки имеем:

$$\delta = \frac{h}{E \cdot F},\tag{1.20}$$

где h – толщина прокладки в сжатом состоянии;

E – динамический модуль упругости материала прокладки;

F – суммарная площадь прокладки.

Выберем материал прокладки – пористая (губчатая) резина.

Тогда согласно [3]:

$$E = 14.5 \cdot 10^5 \frac{f}{h^2}$$
.

Выберем толщину h = 0.01 м. Тогда из формулы (1.20) имеем:

$$F = \frac{h}{E \cdot \delta} = \frac{0.01}{14.5 \cdot 10^5 \cdot 6.84 \cdot 10^{-7}} = 0.01i^{-2}.$$

Выберем площадь прокладки (рис. 1.8 б) в виде четырех квадратных элементов площадью F_I :

$$F_1 = \frac{F}{A} = \frac{0.01}{A} = 0.0025 i^{-2}$$
.

Тогда сторона каждого квадрата равна $b = \sqrt{F_1} = \sqrt{0.0025} = 0.05 \,i$.

Амплитуду колебаний массы на упругих элементах определим из формулы

$$\hat{A} = \beta \cdot \hat{A}_{\tilde{n}\hat{o}} \,\,\,\,(1.21)$$

где $\hat{A}_{\tilde{n}\hat{o}}$ — статическое перемещение массы m под действием амплитудного значения возмущающей нагрузки P_0 .

$$\dot{A}_{\tilde{n}\dot{o}} = P_0 \cdot \delta \,, \tag{1.22}$$

Величину P_0 определим из формулы для центробежной силы ротора 1 (см. рис. 1.8 а)

$$P_0 = m_1 \Omega^2 e = 50 \cdot 209,4^2 \cdot 0,0005 = 1096,2\hat{I}$$
.

Тогда
$$\grave{A}_{\tilde{n}\delta} = P_0 \cdot \delta = 1096, 2 \cdot 68, 4 \cdot 10^{-7} = 0,75 \cdot 10^{-3} \grave{i}$$

1.9 Исследование активной виброизоляции

Для условий предыдущей задачи 1.8 построить зависимость амплитуды колебаний A станины в зависимости от β . Изменять β в пределах от 0,1 до 1 с шагом 0,1.

Вычисления A для различных β проведены по формулам (1.17)–(1.22). Результаты расчетов ω_0 , δ , $\mathring{A}_{\tilde{n}\delta}$, A сведены в таблицу 1.1.

Таблица 1.1

β	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
ω_0 , рад/с	63,14	85,50	100,58	111,93	120,9	128,23	134,4	139,4	144,1	148,09
δ , 10^{-7}	12,55	6,83	4,94	3,99	3,42	3,03	2,76	2,57	2,40	2,27
Н/м										
$\hat{A}_{ ilde{n}\hat{o}}$, $_{ ext{MM}}$	1,37	0,75	0,54	0,44	0,37	0,33	0,3	0,28	0,26	0,25
A, MM	0,137	0,15	0,16	0,17	0,19	0,20	0,21	0,225	0,236	0,25

На рис. 1.9 по результатам расчетов построены графики зависимостей $\hat{A}_{\tilde{n}\hat{o}}=f_1(\beta)$ и $\hat{A}=f(\beta)$. Из графиков следует, что с уменьшением β увеличивается $\hat{A}_{\tilde{n}\hat{o}}$ и уменьшается A.

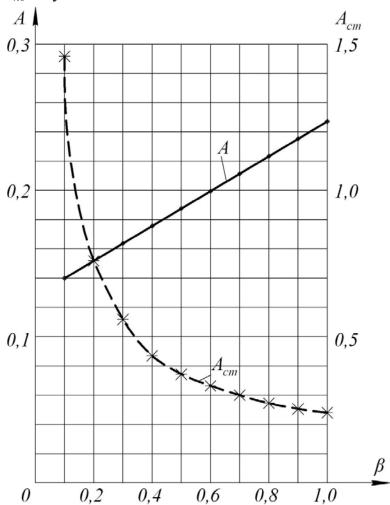


Рисунок 1.9 – Графики зависимостей A_{cr} и A от β

1.10 Расчет пассивной виброизоляции

На рис. 1.10 приведена схема машины с неуравновешенным ротором 1 и станиной 2, установленной на упругие опоры 3 и 4. Центр массы машины совершает вынужденные незатухающие колебания под действием центробежной силы неуравновешенного ротора:

$$y_1 = \lambda_1 \sin(\Omega t + \alpha_1), \tag{1.23}$$

где $\hat{A}_{\rm l}$ – амплитуда колебаний; Ω – угловая скорость ротора 1.

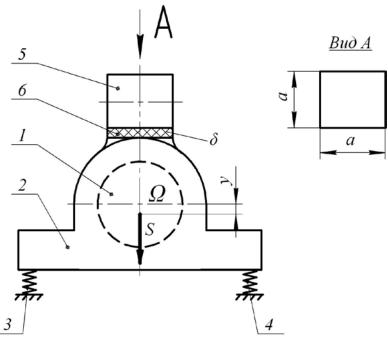


Рисунок 1.10 – Схема пассивной виброизоляции:

1 – ротор; 2 – станина; 3, 4 – упругие опоры; 5 – защищаемое устройство; 6 – упругая прокладка

На станине 2 на упругой прокладке 6 установлено защищаемое устройство 5. Устройство 5 совершает колебания:

$$m_3\ddot{y} + \frac{y}{\delta_3} = \frac{y_1}{\delta_3},\tag{1.24}$$

где m_3 – масса устройства; δ_3 – податливость прокладки 6.

Подставив y_1 из (1.23) в (1.24) и почленно разделив уравнение на m_3 , получим:

$$\ddot{y}+\frac{y}{m\delta_3}=\frac{\dot{A_1}}{m\delta_3}sin(\Omega t+\alpha_1).$$
 Обозначим: $\frac{1}{m\delta_3}=\omega_0^2$; $\frac{\dot{A_1}}{m\delta_3}=q$, тогда $\ddot{y}+\omega_0^2y=q\sin(\Omega t+\alpha)$.

Амплитуда колебаний устройства 6 определяется согласно [1] из формулы

$$A = \frac{q}{\left|\omega_0^2 - \Omega^2\right|}.$$

Подставив в эту формулу $q = \frac{A_1}{\omega_0^2}$, получим:

$$A = \frac{A_{1}}{\left|1 - \frac{\Omega^{2}}{\omega_{0}^{2}}\right|} = \beta A_{1}, \tag{1.25}$$

где β – динамический коэффициент амплитуды;

$$\beta = \frac{1}{\left|1 - \frac{\Omega^2}{\omega_0^2}\right|}.\tag{1.26}$$

Из формулы (1.25) следует, что виброизоляция эффективна (A < A1) при β < 1.

Исходные данные: m — масса станины и ротора, m = 200 кг, m_3 — масса защищаемого устройства, m_3 = 2 кг; Ω = 209,4 рад/с; A_1 = 0,15·10⁻³м.

Зададимся $\beta = 0,2$.

Из формулы (1.26) определим ω_0 :

$$\omega_0 = \frac{\Omega}{\sqrt{1 + \frac{1}{\beta}}} = \frac{209,4}{\sqrt{1 + \frac{1}{0,2}}} = 85,5 \frac{\partial \dot{a}\ddot{a}}{\tilde{n}}.$$

Определим податливость прокладки:

$$\delta_3 = \frac{1}{m_3 \cdot \omega_0^2} = \frac{1}{2 \cdot 85.5^2} = 6.84 \cdot 10^{-5} \frac{\hat{I}}{\hat{i}}$$

Выбираем материал прокладки с динамическим модулем упругости $E = 0.25 \cdot 10^{-5} \, \frac{\acute{I}}{\grave{i}^{-2}} \, \, (\text{пористая резина}).$

Зададимся толщиной прокладки $h_3 = 0,005$ м.

Определим площадь прокладки:

$$F_3 = \frac{h_3}{E \cdot F_3} = \frac{0,005}{0,25 \cdot 10^5 \cdot 6,84 \cdot 10^{-5}} = 0,0029 \,i^{-2}.$$

Принимая прокладку в виде квадрата со стороной b_3 , определим:

$$b_3 = \sqrt{F_3} = 0.054 i$$
.

Определим амплитуду колебаний устройства:

$$A_3 = \beta A_1 = 0.2 \cdot 0.15 \cdot 10^{-3} \, i = 0.03 \cdot 10^{-3} \, i$$
.

2 РАСЧЕТ ПРОИЗВОДИТЕЛЬНОСТИ МАШИН

2.1 Расчет теоретической производительности однооперационного однопозиционного полуавтомата

Полуавтомат швейный короткошовный ПШК-100 с полем обработки 100x100 мм предназначен для пристрачивания аппликаций и изготовления вышивок на деталях верха обуви. Полуавтомат обслуживается одним оператором. При изготовлении вышивок деталь верха обуви загружается в двухслойную сменную кассету, затем сменная кассета устанавливается в постоянную кассету, закрепленную на каретке координатного устройства. Среднее время загрузки $t_3 = 10$ с. Затем оператор нажатием на кнопку пульта запускает полуавтомат. Кассета из исходного положения перемещает деталь под иглу в начало вышивки, совершая холостой ход.

Время шитья зависит от количества стежков N_{cm} в рисунке вышивки и скорости шитья n (стежков в минуту)

$$t_{\phi} = \frac{60N_{\tilde{n}\tilde{o}}}{n}(c). \tag{2.1}$$

По окончании шитья кассета совершает холостой ход в исходное положение. Суммарное время холостых ходов $t_x = 1,5$ с. Время выгрузки детали обуви из кассеты составляет $t_g = 5$ с.

Требуется определить теоретическую производительность полуавтомата при числе стежков N_{cm} в рисунке вышивки, равном 100, 200, 300, 400, и скорости шитья n=720 ст/мин. По результатам расчетов построить графики зависимости Q_m в функции N_{cm} . Теоретическая сменная производительность полуавтомата определяется по формуле

$$Q_{\delta} = \frac{3600 \cdot 8}{2 \cdot T_{\delta}} \ddot{a} \tilde{\delta} , \qquad (2.2)$$

где T_p — длительность рабочего цикла полуавтомата (c).

Величина T_p определяется из формулы:

$$\dot{O}_{\delta} = t_{\varsigma} + t_{\hat{a}} + \sum t_{\hat{a}\hat{\delta}} , \qquad (2.3)$$

$$_{\Gamma Де} \sum t_{\hat{\imath}\hat{a}\hat{\delta}} = t_{\tilde{o}} + t_{\phi}$$
 (2.4)

Результаты вычислений по формулам (2.4), (2.3), (2.2) сведены в таблицу 2.1. Таблица 2.1

N_{cm}	$t_{\scriptscriptstyle \phi}$	$\grave{O}_{\check{o}}$	$Q_{\grave{o}}$
100	8,3	24,8	580
200	16,7	33,2	434
300	25	41,5	347
400	33,3	49,8	289

По результатам вычислений строим график зависимости $\overline{Q}_{\delta} = f(N_{\tilde{n}\delta})$ (рис. 2.1).

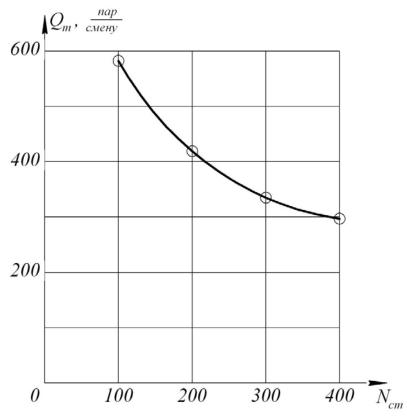


Рисунок 2.1 – График зависимости $Q_m = f(N_{cm})$

2.2 Расчет теоретической производительности вышивального многоголовочного полуавтомата с единым приводом головок

На рис. 2.2 приведена технологическая схема вышивального многоголовочного полуавтомата с единым приводом вышивальных головок. Количество головок – N. Технологический цикл работы полуавтомата включает в себя:

- выгрузку пяльцев с готовой вышивкой и загрузку пялец с заправленной в них тканью на каждой головке, время загрузки t_3 , время выгрузки t_6 ;
- переход оператора от одной головки к другой и возврат к исходной головке, среднее время перехода между головками $t_{\it nep}$;
- одновременное вышивание тканей на N головках, суммарное время обработки $\sum t_{\hat{\imath}\hat{a}\hat{\delta}}$.

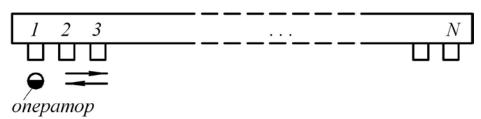


Рисунок 2.2 — Технологическая схема вышивального многоголовочного полуавтомата с единым приводом головок:

1, 2, 3... N – номера головок

Время технологического цикла определится из формулы

$$T_{\grave{o}} = \left(t_{\varsigma} + t_{\hat{a}} + t_{i\mathring{a}\check{o}}\right) N + \sum_{i\mathring{a}\check{o}} t_{i\mathring{a}\check{o}}. \tag{2.5}$$

За время T_m обрабатывается N изделий. Рабочий цикл T_p определяется из

формулы
$$T_{\delta} = \frac{T_{\delta}}{N} = t_{\varsigma} + t_{\hat{a}} + t_{\imath \hat{a} \delta} + \frac{\sum t_{\imath \hat{a} \delta}}{N}.$$

Исходные данные: $t_3 = 5$ c, $t_6 = 5$ c, $t_{nep} = 1$ c, N = 10.

Определить теоретическую сменную производительность полуавтомата при $\sum t_{\hat{\imath}\hat{a}\hat{\delta}}$, равном 5, 10, 15, 20, 25, 30 минут, по результатам расчетов построить график зависимости $Q_{\hat{\delta}} = f(\sum t_{\hat{\imath}\hat{a}\hat{\delta}})$.

 Q_{δ} определяется по формуле

$$Q_{\delta} = \frac{28800}{T_{\delta}} \frac{\phi \delta}{\tilde{n} i \mathring{a} i \acute{o}}, \qquad (2.6)$$

где T_p определяется из (2.5).

Результаты расчетов сведены в таблицу 2.2 Таблица 2.2

$\sum t_{\hat{\imath}\acute{a}\check{\delta}}$,c	$t_{\varsigma} + t_{\hat{a}} + t_{\ddot{a}\check{\delta}}$,c	T_{δ} ,c	$Q_{\grave{o}}$, штук/смену			
300		41	702			
600		71	405			
900	11c	101	285			
1200		131	220			
1500		161	179			
1800		191	150			

 $\overline{\Gamma}$ рафик зависимости Q_{δ} от $\sum t_{\hat{\imath}\hat{a}\hat{\delta}}$ построен в виде кривой 1 на рис. 2.3.

2.3 Расчет теоретической производительности многоголовочного вышивального полуавтомата с автономными приводами головок

Технологическая схема полуавтомата приведена на рис. 2.4. В отличие от полуавтомата, рассмотренного в задаче № 2 (см. рис. 2.1), во время выгрузки и загрузки пяльцев на одном полуавтомате остальные полуавтоматы выполняют вышивку.

Можно определить такое число полуавтоматов N_m , при котором после загрузки—выгрузки изделий на всех полуавтоматах заканчивается вышивка:

$$\left(t_{\varsigma}+t_{\hat{a}}+t_{\ddot{a}\delta}\right)N_{\delta}=\sum t_{\hat{a}\delta}.$$

Из уравнения определим N_m :

$$N_{\dot{o}} = \frac{\sum t_{\hat{\imath} \dot{\alpha} \dot{\delta}}}{t_c + t_{\hat{\alpha}} + t_{\imath \dot{\alpha} \dot{\delta}}}.$$

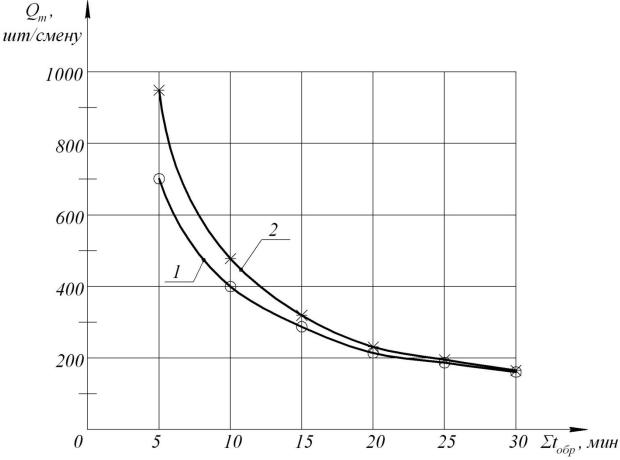


Рисунок 2.3 – Графики зависимостей Q_{δ} от $\sum t_{\hat{\imath}\!\hat{a}\check{\delta}}$:

- 1 для полуавтомата с единым приводом головок;
- 2 для полуавтомата с автономными приводами головок;

Рисунок 2.4 – Технологическая схема вышивального полуавтомата с автономными приводами головок: 1, 2, 3...N – номера головок

В этом случае при изменении $\sum t_{\hat{\imath}\hat{a}\check{o}}$ должно изменяться число N_m полуавтоматов.

Часто имеет место случай, когда фактическое число полуавтоматов N_ϕ меньше теоретического.

Тогда после обслуживания N_{ϕ} полуавтоматов оператор должен ждать, пока закончится вышивание в течение отрезка времени:

$$t_{\hat{\imath}a} = \sum t_{\hat{\imath}a\delta} - (t_{\varsigma} + t_{\hat{a}} + t_{\hat{\imath}a\delta}) N_{\hat{o}}.$$

С учетом этого время рабочего цикла определится из равенства

$$T_{\delta} = \frac{\left(t_{\varsigma} + t_{\hat{a}} + t_{\hat{\imath}\hat{a}\delta}\right)N_{\hat{o}} + \sum t_{\hat{\imath}\hat{a}\delta} - \left(t_{\varsigma} + t_{\hat{a}} + t_{\hat{\imath}\hat{a}\delta}\right)N_{\hat{o}}}{N_{\hat{o}}} = \frac{\sum t_{\hat{\imath}\hat{a}\delta}}{N_{\hat{o}}}.$$
 (2.7)

При тех же исходных данных, что и в задаче № 3 ($t_3 = t_6 = 5$ с, $t_{nep} = 1$ с, $N_{\phi} = N = 10$), определить теоретическую сменную производительность полуавтомата при $\sum t_{\hat{\imath}\hat{\imath}\hat{\imath}\hat{\sigma}}$, равном 5, 10, 15, 20, 25, 30 минут, по результатам расчетов построить график зависимости $Q_{\hat{\sigma}} = f(\sum t_{\hat{\imath}\hat{\imath}\hat{\sigma}})$.

Результаты расчетов по формулам (2.7), (2.6) сведены в таблицу 2.3. Таблица 2.3

$\sum t_{\hat{\imath}\acute{a}\check{\delta}}$,c	T_{δ} ,c	$Q_{\grave{o}}$, штук/смену
300	30	702
600	60	480
900	90	320
1200	120	240
1500	150	192
1800	180	160

График зависимости Q_{δ} от $\sum t_{i\delta\delta}$ приведен на рис. 2.3 в виде кривой 2. Из сравнения кривых 1 и 2 следует, что при прочих равных условиях полуавтомат с автономными приводами головок более производителен.

2.4 Расчет теоретической производительности однооперационной многопозиционной машины-автомата

Операция литья низа на заготовку верха обуви состоит из загрузки—выгрузки готовой пары, впрыска расплавленной массы термопласта в прессформу, формирования низа обуви в прессформе. Соответствующие времена указанных переходов обозначим: t_3 , t_6 , t_{6np} , $t_{\phi opm}$. Наиболее продолжительным является $t_{\phi opm}$.

Схема литьевой машины-автомата приведена на рис. 2.5. Барабан 1 совершает вращательное движение с остановками. На барабане размещены пресс-формы 2. Литьевую машину обслуживают два оператора. Оператор 3 снимает с колодок готовую обувь, оператор 4 надевает заготовки верха на колодки. Блок впрыска смеси 5 впрыскивает смесь в пресс-форму.

Исходные данные: $t_3=10$ c, $t_6=10$ c, $t_{enp}=8$ c, время поворота барабана $t_{noe}=3$ c, $t_{\phi opm}=90$ c.

Требуется определить время остановки барабана, число пресс-форм N, теоретическую сменную производительность.

Время остановки барабана должно быть достаточным для выполнения загрузки, выгрузки и впрыска. Принимаем: $t_{ocm} = 11$ с. Формование происходит при перемещении барабана на (N-3) позиций. Следовательно:

$$(N-3)(t_{i\hat{i}\hat{a}} + t_{\hat{i}\hat{n}\hat{o}}) = t_{\hat{o}\hat{i}\hat{o}\hat{i}}$$
, откуда

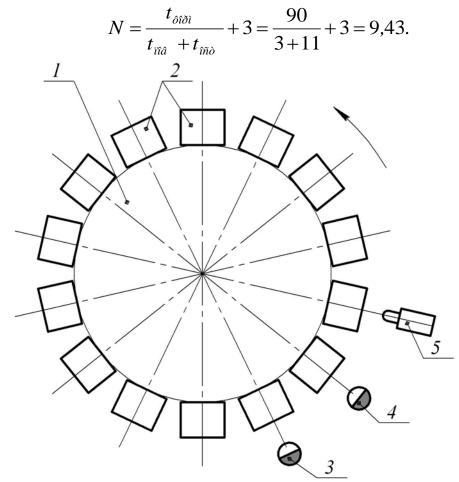


Рисунок 2.5 – Схема литьевой машины-автомата: 1 – барабан; 2 – пресс-формы; 3,4 – операторы; 5 – блок впрыска смеси

Принимаем N=10. Рабочий цикл литьевой машины определится из равенства

$$T_{\tilde{\partial}} = t_{\tilde{\imath}\tilde{n}\hat{o}} + t_{\tilde{\imath}\tilde{\imath}\hat{a}} = 14\tilde{n}.$$

Теоретическая сменная производительность определится из формулы

$$Q_{\delta} = \frac{28800}{14} = 2057 \frac{\ddot{a} \tilde{\delta}}{\tilde{n} \tilde{a} \tilde{i} \tilde{\delta}}.$$

2.5 Расчет фактической производительности короткошовного швейного полуавтомата ПШК-100 (см. условие задачи 2.1)

В паспорте полуавтомата приведены показатели надежности:

 T_o — средняя наработка на отказ, T_o = 48 часов машинного времени; t_e — среднее время восстановления, t_e = 0,6 часа.

При N_{cm} =100 длительность рабочего цикла составит T_p = 24,8 с (см.

таблицу 2.1). $Q_{\delta}=580\frac{\ddot{a}\dot{\delta}}{\tilde{n}\dot{a}\dot{a}\dot{\delta}}$. Машинное время равно:

$$t_i = T_{\delta} - t_c - t_{\hat{a}} = 24.8 - 15 = 9.8\tilde{n}.$$

Таким образом, общее время за период T_o составит:

$$\Theta = 48 \frac{24.8}{9.8} = 121.5 \div \hat{a}\tilde{n}\hat{a}.$$

Это время займет:

$$\Theta = \frac{121,5}{8} = 15,19\tilde{n}i\dot{a}i$$
.

В результате наблюдения за работой полуавтомата в течение Θ установлены следующие потери рабочего времени.

 t_u — время на замену инструмента (иглы), t_u = 18 с, поломки иглы происходят при обработке 300 пар заготовок.

Потери на выпуск брака, удельный вес брака составляет 0,1 % от выпущенной продукции.

Затраты времени на переналадку полуавтомата на выпуск новых изделий происходит один раз в смену, $t_{nep} = 12$ минут.

Организационные потери t_{ope} составляют 0,5 часа в смену.

Требуется определить: коэффициент технического использования полуавтомата $\eta_{\delta \mathring{a} \~{o}}$, коэффициент загрузки η_{ς} , коэффициент использования $\eta_{\grave{e}}$, фактическую производительность $Q_{\~{o}}$.

Коэффициенты $\eta_{\delta \hat{a} \hat{o}}$, η_{ς} , $\eta_{\grave{e}}$ определяются из формул:

$$\eta_{\partial\mathring{a}\tilde{o}} = \frac{\Theta_{\tilde{o}}}{\Theta_{\tilde{o}} + \sum_{\tilde{n}} \Theta_{\tilde{n}}}; \tag{2.8}$$

$$\eta_{\varsigma} = \frac{\Theta_{\delta} + \sum_{\delta} \Theta_{\tilde{n}}}{\Theta_{\delta} + \sum_{\delta} \Theta_{\tilde{n}} + \Theta_{\tilde{n}\delta\tilde{n}}}; \tag{2.9}$$

$$\eta_{\dot{e}} = \eta_{\dot{o}\mathring{a}\tilde{o}} \cdot \eta_{c} \,; \tag{2.10}$$

где $\Theta_{\check{\sigma}}$ – рабочее время за период наблюдений, $\Theta_{\check{\sigma}} = \Theta - \sum \Theta_{\tilde{n}} - \Theta_{\hat{\imath}\check{\sigma}\check{a}}$;

 $\sum \Theta_{\tilde{n}}$ — собственные потери рабочего времени, зависящие от конструкции полуавтомата;

$$\sum \Theta_{\tilde{n}} = \Theta_{i\tilde{a}} + \Theta_{\tilde{a}\tilde{\delta}} + \Theta_{i\tilde{a}\tilde{\delta}} + \Theta_{\hat{e}}; \qquad (2.11)$$

 $\Theta_{\hat{\imath}\hat{a}}$ – потери рабочего времени по оборудованию, т.е. на устранение отказов оборудования;

 $\Theta_{\acute{a}\acute{o}}$ – потери рабочего времени на выпуск брака;

 $\Theta_{\it iå\eth}$ – потери рабочего времени на переналадку полуавтомата;

 $\Theta_{\it i}$ – потери рабочего времени, связанные со сменой инструмента;

 $\Theta_{\imath \delta ilde{a}}$ – потери рабочего времени по организационным причинам.

Для определения приведенных потерь определим сначала число рабочих смен $n_{\hat{n}\hat{\imath}}$ и число пар обуви $N_{\hat{\imath}}$ за период Θ :

$$n_{\tilde{n}\tilde{i}} = \frac{\Theta}{8} = \frac{121.5}{8} = 15.19;$$

$$N_{\hat{i}} = \frac{\Theta \cdot 3600}{2T_{\delta}} = \frac{121.5 \cdot 3600}{2 \cdot 24.8} = 3483.$$

Далее определим:

$$\begin{split} \Theta_{i\acute{a}} &= t_{\hat{a}} = 0,6 \div \hat{a}\tilde{n}\grave{a}; \\ \Theta_{\acute{a}\check{\delta}} &= \frac{N_{\hat{i}} \cdot 0,001 \cdot 8}{Q_{\hat{o}}} = \frac{3483 \cdot 0,001 \cdot 8}{580} = 0,048 \div \hat{a}\tilde{n}\grave{a}; \\ \Theta_{i\acute{a}\check{\delta}} &= t_{i\acute{a}\check{\delta}} \cdot n_{\tilde{n}\hat{i}} = \frac{12 \cdot 15,19}{60} = 3,138 \div \hat{a}\tilde{n}\grave{a}; \\ \Theta_{\tilde{i}} &= \frac{t_{\tilde{i}} \cdot N_{\hat{i}}}{300 \cdot 3600} = 0,058 \div \hat{a}\tilde{n}\grave{a}; \\ \Theta_{i\eth\tilde{a}} &= t_{i\eth\tilde{a}} \cdot n_{\tilde{n}\hat{i}} = 0,5 \cdot 15,19 = 7,595 \div \hat{a}\tilde{n}\grave{a}. \end{split}$$

Подставляя полученные значения в (2.11), (2.8), (2.9), (2.10), получим:

$$\sum_{\tilde{n}} \Theta_{\tilde{n}} = 3,744 \div \tilde{a}\tilde{n}\tilde{a};$$

$$\Theta_{\tilde{o}} = (121,5 - 3,744 - 7,595) \div \tilde{a}\tilde{n} = 110,16 \div \tilde{a}\tilde{n};$$

$$\eta_{\tilde{o}\tilde{a}\tilde{o}} = \frac{110,16}{110,16 + 3,744} = 0,967;$$

$$\eta_{\varsigma} = \frac{110,16 + 3,038}{110,16 + 3,038 + 7,595} = 0,937;$$

$$\eta_{\tilde{e}} = 0,967 \cdot 0,937 = 0,906;$$

$$Q_{\tilde{o}} = Q_{\tilde{o}} \cdot \eta_{\tilde{i}} = 580 \cdot 0,906 = 525 \frac{\tilde{i}\tilde{a}\tilde{o}}{\tilde{n}\tilde{a}\tilde{a}\tilde{o}}.$$

ЛИТЕРАТУРА

- 1. Расчет колебаний конструктивных элементов машин : методическая разработка по курсу «Расчет и конструирование типовых машин легкой промышленности» для студентов специальности «Машины и аппараты легкой, текстильной промышленности и бытового обслуживания» / УО «ВГТУ»; Б. С. Сункуев. Витебск: УО «ВГТУ», 1999. 43 с.
- 2. Феодосьев, В. И. Сопротивление материалов : учебник для вузов / В. И. Феодосьев. 9-е изд., перераб. Москва : Наука, гл. ред. физ.-мат. лит., 1986. 512 с.
- 3. Вальщиков, Н. М. Расчет и проектирование машин швейного производства / Н. М. Вальщиков, Б. А. Зайцев, Ю. Н. Вальщиков. Ленинград: Машиностроение (Ленинградское отд.), 1973. 344 с.

ПРИЛОЖЕНИЕ

РАСЧЕТ ЭКВИВАЛЕНТНОЙ ЖЕСТКОСТИ ПРУЖИНЫ

На рис. П.1 показано два положения цилиндрической поверхности диаметра D_1 относительно цилиндрической поверхности диаметра D_3 при смещении центра 0 на величину y_0 . Пусть α — угол между элементами пластинчатой пружины, а ось одного из этих элементов расположена вдоль оси y. На верхней части цилиндра D_3 расположено $180^{\circ}/\alpha$ элементов пружины.

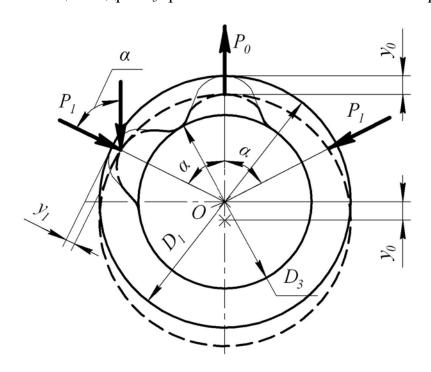


Рисунок П.1 – Схема к расчету эквивалентной жесткости пружины

Допустим, что $\alpha = 60^{\circ}$ и число элементов равно 3.

Эквивалентной жесткостью пружины назовем коэффициент k_2 в соотношении:

$$P_{\delta} = k_2 \cdot y_0, \tag{\Pi.1}$$

где P_{δ} – сумма сил, действующих на кольцо со стороны элементов пружины.

$$P_{\delta} = P_0 + 2P_1 \cos \alpha \,, \tag{II.2}$$

где P_0 – сила сжатия центрального элемента; $P_0 = k_{\circ} \cdot y_0$;

 k_{\circ} – коэффициент жесткости элемента;

 P_{1} – сила сжатия боковых элементов,

$$P_1 = y_1 \cdot k_{v}, \tag{\Pi.3}$$

где y_1 – деформация боковых элементов;

$$y_1 = y_0 \cdot \cos \alpha \,. \tag{\Pi.4}$$

Подставив (П.3) и (П.4) в (П.2), получим:

$$P_{\delta} = k_{y}y_{0} + 2k_{y}y_{0}\cos^{2}\alpha = k_{y}y_{0}(1 + 2\cos^{2}\alpha).$$

При $\alpha = 60^{\circ}$

$$P_{\delta} = 1.5k_{\circ}y_{0}. \tag{\Pi.5}$$

Из (П.1) и (П.5) имеем

$$k_{\circ} = \frac{k_2}{1.5} \,. \tag{\Pi.6}$$

Приближенный расчет коэффициента жесткости элемента пластинчатой пружины.

Рассмотрим элемент (см. рис. Π .2) как прямую балку на двух опорах диной l_3 :

$$k_{\circ} = \frac{48EI_3}{l_3^3},\tag{\Pi.7}$$

где I_3 – момент инерции сечения балки;

$$I_3 = \frac{b_3 h_3^3}{12} \,, \tag{\Pi.8}$$

$$l_3 = \alpha \cdot \frac{D_3}{2}.\tag{II.9}$$

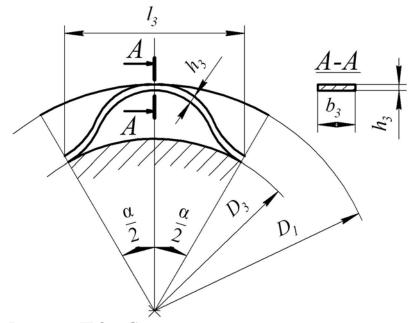


Рисунок П.2 – Схема к расчету элемента пружины