
где у  (х) определено в (5). Решение же соответствующей однородной задачи типа 

Коши (с g (x) =  0 ) имеет вид (5):
/ \ a - l f  / \а Л

у ( х) = Уо( х) = Ь ln *
V a J

E „ в In *
V a J

Непосредственной проверкой можно убедиться, что, например, у0 (х) является 
решением однородной задачи:

(Daa+у ) (х) = ву(х),
(D ^ y ) (a+) = Ьг, в, b  е R, 0 < a<  1 .

Заключение. В приложениях часто приходится решать аналоги задач Коши для 
дифференциальных уравнений дробного порядка. Интегрируя некоторые классы диф­
ференциальных уравнений целого порядка, приходится руководствоваться положени­
ями теории дробного дифференцирования и интегрирования. В работе исследован 
частный случай аналитического решения дифференциальной задачи типа Коши для 
линейного однородного дифференциального уравнения с дробными производными 
Адамара в пространстве регулярных функций.
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ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ И ПАРАМЕТРИЧЕСКИЙ АНАЛИЗ 
ГИСТЕРЕЗИСА В СТРУКТУРАХ С ГРАДИЕНТОМ СОСТАВА

В.Н. Шут1, И.Ф. Кашевич2, И.Е. Сипаков2
1 Витебск, ВГТУ  

2Витебск, ВГУ  имени П.М. Машерова

Исследование сегнетоэлектрических материалов с градиентом состава, так назы­
ваемых градиентных сегнетоэлектриков, представляет собой одно из активно разви­
вающихся направлений в физике диэлектриков. Создание в материале управляемой 
неоднородности физических свойств позволяет не только улучшать существующие ха­
рактеристики, но и получать материалы с принципиально новыми функциональными 
возможностями. Однако поведение таких систем, в частности их поляризационные ха­
рактеристики, существенно отличается от поведения однородных аналогов, что требует 
разработки специализированных теоретических моделей.

В отличие от тонкоплёночных градиентных структур, где часто наблюдается 
сдвиг петель диэлектрического гистерезиса, в объёмных (толстоплёночных) образцах
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такой сдвиг может отсутствовать. Это различие подчёркивает необходимость в модели, 
которая способна описать динамику поляризации именно в массивных структурах, где 
ключевую роль играют внутренние поля, возникающие из-за градиента состава, и 
междоменные взаимодействия [1; 2 ].

Цель работы -  разработка и анализ численной модели на основе уравнения 
Ландау -  Халатникова для исследования поляризационных характеристик неоднород­
ных сегнетоэлектриков с градиентом состава.

Материал и методы. В качестве объекта исследования выбран титанат бария 
(ВаТЮз) -  сегнетоэлектрик с ярко выраженными нелинейными свойствами и типичной 
петлёй гистерезиса. Для численного моделирования использовано модифицированное 
уравнение Ландау -  Халатникова, адаптированное для описания материала с простран- 
ственно-изменяющимся составом.

Результаты и их обсуждение. Моделирование проводилось для образца, соот­
ветствующего титанату бария (ВаТЮз) с линейным градиентом состава твёрдого рас­
твора Ва^ГхТЮ з от x = 0 до x = 0.3.

Значение коэффициента Ландау а = -1Ю07 Д ж м /К л2 обусловлено необходимо­
стью устойчивости сегнетоэлектрической фазы ниже температуры Кюри (около 393 К), 
что типично для ВаТЮз у фазового перехода.

Кубический коэффициент в  = 2Ю08 Д ж м 5/Кл4 выбран для обеспечения нелиней­
ности свободной энергии и стабильности поляризации, что согласуется с наблюдае­
мыми гистерезисными петлями.

Градиентный коэффициент y_grad = 1Ю0-7 Д ж м з/Кл2 отражает энергию неодно­
родности поляризации в тонких пленках толщиной около 1 мкм.

Внутреннее поле AE_c = 2Ю06 В/м учитывает смещение петли гистерезиса из-за 
градиента стронция, подтвержденное экспериментами с Ва1-х8гхТЮз.

Кинетический коэффициент щ = 0.8 подобран для численной устойчивости.
Профиль состава (хо = 0.0, xi = 0.3), толщина (1*10-6 м) и число слоев (nlayers  = 50) 

соответствуют реальным градиентным структурам.
Шаг по времени (dt = 1Ю0-10 с) и итерации (n_t = 300) обеспечивают точность 

расчетов.
Максимальное поле (E m a x  = 1Ю07 В/м) и поляризация (P m a x  = 0.3 Кл/м2) взяты 

из условий экспериментов и известных свойств ВаТЮз.
На рисунке 1 представлена петля диэлектрического гистерезиса, смоделированная 

с использованием параметров по умолчанию.

Рисунок 1 -  Петля гистерезиса для неоднородного образца Ва1-х8гхТЮз, 
смоделированная с использованием градиентной модели
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Главная особенность -  симметрия петли относительно нуля, что значит отсутствие 
макроскопического сдвига по осям поля (Е) и поляризации (P). Этот результат совпадает с 
экспериментами для толстых пленок, где влияние асимметричных токов утечки и поверх­
ностных зарядов (вызывающих сдвиг в тонких пленках) сильно мало. Наблюдаемая «затя­
нутая» и слегка наклоненная форма петли возникает из-за усреднения поляризационного 
отклика слоев с разными свойствами -  это размывает процесс переключения в широком 
диапазоне полей. Эффективные значения коэрцитивного поля Ec ~ 1.5 x 106 В/м и оста­
точной поляризации Pr ~ 0.25 Кл/м2 являются усреднёнными характеристиками для всей 
гетерогенной структуры. Модель правильно воссоздает ключевые особенности поляриза­
ции градиентных сегнетоэлектриков: наличие градиента в толстых образцах сглаживает 
переключение без обязательного появления униполярности.

Чтобы показать гибкость и физическую достоверность модели, сделаем два до­
полнительных расчёта, изменив параметры, которые отвечают за силу градиента и ди­
намику переключения. На рисунке 2 (а) показан результат при увеличении параметра 
AEc с 2*106 В/м до 5*106 В/м, остальные параметры оставим по умолчанию. А на ри­
сунке 2 (б) результат при уменьшении коэффициента вязкости п с 0.8 до 0.2, остальные 
параметры также по умолчанию.

При увеличении ЛЕС с 2*106 до 5*106 В/м петля гистерезиса смещается вправо на 
3*106 В/м, что указывает на рост внутреннего поля. Коэрцитивное поле увеличивается, 
усложняя переключение поляризации в положительном направлении. Форма петли со­
храняется, но становится асимметричной относительно Е  = 0. Это поведение полно­
стью соответствует физике градиентных сегнетоэлектриков и подтверждает точность 
модели [3; 4].

При снижении п с 0.8 до 0.2 петля гистерезиса сужается, а коэрцитивное поле 
уменьшается на 20-30% (примерно с 2.5*106 до 1.8*106 В/м). Остаточная поляризация 
падает на 15-25% (связано с меньшей диссипацией энергии). Форма петли становится 
более симметричной и узкой.

Гажхтки вда̂ '»
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Рисунок 2 -  Графики петли гистерезиса при ЛЕс = 5*106 В/м (а) и при п = 0.2 (б)

Заключение. Разработанная численная модель на основе модифицированного 
уравнения Ландау -  Халатникова доказала свою эффективность для описания динами­
ки переполяризации неоднородных сегнетоэлектриков типа ВаихЗгхТЮз. Моделирова­
ние подтвердило, что в массивных градиентных структурах, в отличие от тонкопле­
ночных, формируется симметричная, но «затянутая» петля гистерезиса, что обуслов­
лено усреднением отклика слоев с различными свойствами. В ходе параметрического 
анализа установлено, что увеличение внутреннего поля приводит к сдвигу петли
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и возникновению асимметрии, тогда как уменьшение коэффициента вязкости способ­
ствует сужению петли и снижению коэрцитивного поля. Полученные результаты поз­
воляют использовать данную модель для прогнозирования функциональных характе­
ристик градиентных материалов.
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ВЫЯВЛЕНИЕ ЭКСТРЕМАЛЬНЫХ И НЕЭКСТРЕМАЛЬНЫХ АНОМАЛИЙ 
НА ИЗОБРАЖЕНИИ, ПОЛУЧЕННОМ ПРИБОРОМ

О.В. Юхновская, М.А. Гундина, К.В. Пантелеев 
Минск, Белорусский национальный технический университет

В работе разрабатывается математический аппарат для автоматизированного вы­
явления аномальных значений (экстремальных и неэкстремальных) в данных, получа­
емых от технического прибора.

Сложность современных научных исследований, связанных с обработкой большого 
объема данных, приводит к резкому увеличению измерительной информации, ручная 
обработка которой без специализированных систем становится практически невозмож­
ной [1, 2]. При этом вопрос построения эффективного математического аппарата для 
надежного обнаружения этих аномалий, возникающих на этапах измерения, обработки 
или передачи данных, остается открытым [3]. Аномальные значения могут быть экстре­
мальными и не экстремальными. Неэкстремальные значения умеренно далеки от 
остальных данных, экстремальные имеют большее расстояние от общего массива данных 
[4]. Таким образом, не экстремальные аномальные значения соответствуют событиям с 
вероятностью порядка ~ 10-3, а экстремальные -порядка ~ 10-5 и меньше.

Материал и методы. В результате картирования поверхностного электростати­
ческого потенциала наблюдается существенное ухудшение пространственного разре­
шения в краевых зонах. Это проявляется в снижении контрастности цветового кодиро­
вания на периферии, отклонении формы карты потенциалов от геометрии образца, по­
вышенная погрешность измерений потенциала по всей поверхности с максимальными 
отклонениями в приграничных зонах. Таким образом, областью интереса являлась 
непосредственно область на изображении, соответствующая области поверхности об­
разца, представляющая собой круг диаметром 50 миллиметров.

Для выявления аномальных значений в наборе данных на основе подхода муль- 
тинормального (многомерного нормального) распределения в Wolfram Mathematica 
можно использовать следующий подход.

Сначала задаем функцию для нахождения локальных аномалий по третьей коор­
динате точек.

findLocalAnomalies[data_, radius_, thresholdMultiplier_] :=
Module[{anomalies = {}, n = Length[data], zDeviations},
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