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В работе рассматриваются только конечные разрешимые группы. Класс групп называют 

наследственным или S–замкнутым, если он замкнут относительно взятия подгрупп. Как уже 

отмечалось во введении, свойством частичной наследственности обладают классы Фишера. 

Напомним, что класс групп F называют классом Фишера[1], если F является N0-замкнутым из 

условия K H G K G   F,  и H/K F. 

Легко видеть, что любой класс Фишера является классом Фиттинга и что любой S–

замкнутый класс Фиттинга является классом Фишера. 

Расширим понятие класса Фишера следующим образом: 

Определение. Пусть X – непустой класс групп. Тогда класс групп F назовём X-классом 

Фишера, если выполняются следующие условия: 

F= N0F; 

если K H G K G   F,  и H/KF, то HF. 

Понятно, что в случае, когда X=N, класс F является классом Фишера. Если единичная 

группа содержится в X, то X-класс Фишера является классом Фиттинга. Тот факт, что не всякий 

X-класс Фишера является классом Фишера подтверждает следующий 

Пример. Пусть класс групп (G :Soc(G) Z(G))  
3

Z E . Тогда по теореме IX.2.8[2] Z
3

 

класс Фиттинга. Определим класс разрешимых групп L
3

2
(Z ) = F  следующим образом: 

GF тогда и только тогда, когда индекс в G её Z3-инъектора является 3

-числом. Как было 

установлено Локеттом(см., например, IX.1.15[2]) класс F является классом Фиттинга и 
2
'
F FS . 

Заметим также, что F ввиду примера IX.3.15[2] не является нормально вложенным классом Фит-

тинга. Следовательно по теореме IX.3.4(a)[2] F не является классом Фишера. Пусть теперь класс 

Фиттинга X=

2
'

S
– класс всех разрешимых 2

′
-групп. Покажем, что F является X-классом Фишера. 

Пусть GF и K H G  , где K такая нормальная подгруппа G, что H/KX. Так как GF, 

KF и поэтому KH
F
. Следовательно, ввиду изоморфизма H/H H/K/H /K

F F

 и Q-

замкнутости класса X заключаем, что H/H
F
X. Отсюда следует, что HFX=F и F является X-

классом Фишера. 
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При переработке текстильных отходов рассматриваем движущееся волокно массы m как 

материальную точку. Поскольку движение волокна определяется изменением координат X и Y 

во времени, положим, что в начальный момент времени волокно находится в точке с координа-

тами X = 0, Y = 0. Входным параметром является координата Y, отражающая процесс растаски-

вания, а перемещение волокна по зубу задается, как выходной параметр, координатой X. Про-

цесс расщипывания осуществляется в зависимости от движения волокна по зубу. Передаточные 

функции W1 и W2 в форме изображений Лапласа представляют дифференциальные уравнения, 

которые связывают текущие координаты X и Y материальной точки — элемента волокна  

[1, с. 38].  
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Координаты X и Y определяются из уравнений [1, с. 38] 

2 1
; .
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W W
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W W W W
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 
     (2) 

Процесс расщипывания характеризуется высокой интенсивностью. Силы, в процессе рас-

щипывания действуют очень короткий промежуток времени, их корректно рассматривать как 

силы, действующие мгновенно, но имеющие конечный импульс. При аналитическом описании 

данные силы представлены в виде импульсной функции, рассматриваемой в короткий промежу-

ток времени. Выделим массу m непрерывно движущегося волокна, сосредоточенную в точке М 

пространства Rn. Начало координат совместим с положением точки М в начальный момент 

времени. Тогда силы, действующие на волокно, будут приложены в точке М. Их поведение в 

окрестности точки М представлено кусочно-непрерывной функцией 1
 , действующей в проме-

жуток времени t от 0 до h, а в остальных случаях равной нулю. 

Кусочно-непрерывную функцию 1
( , )t h  можно записать в виде: 

 1 0 0

0, 0
1

( , ) ( ) ( ) , 0

0,

t

t h t t h I t h
h

h t

  




     

   (3) 

где I — импульс функции 1
( , )t h . 

При 0h   функция δ(t) определяется как предел функции 1
( , )t h : 

                                                    
1

0

( ) lim ( , )
h

t t h 



.                                                               (4) 

Функция δ(t) отражает характер действия мгновенных сил приложенных к точке М в ко-

роткий промежуток времени взаимодействия волокна и поверхности зуба. Данная функция яв-

ляется обобщенной и ее нельзя рассматривать как функцию, заданную общим определением 

математического анализа. После подстановки уравнений (1) и (2) с учетом (4) в математический 

пакет MAPLE получены координаты X и Y при 0t   
4 ,49

4 ,49

( ) 0, 092 sinh( 54.172 ) ,

( ) 0, 08 (2, ) 0, 718 (1, )

6379,171sinh( 54,172 ) 190, 785 ( ).
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Уравнения (5), характеризующие процесс расщипывания, позволяют достаточно просто 

получить уравнение траектории s(t), выражения для скорости ( )v t  и ускорения ( )a t  при движе-

нии материальной точки М (волокна). В промежуток времени t от 0 до 0,003 с волокно скользит 

по поверхности зуба в направлении схода. Силы трения при этом стремятся удержать волокно. 

Максимальное значение сила трения тр
F

 имеет в момент времени t = 0,003 с.  

Установлено, что расчет кинематических параметров исполнительных механизмов при перера-

ботке текстильных отходов с использованием преобразований Лапласа и дельта–функции позволяет 

избежать сложных математических операций по нахождению постоянных интегрирования, разрабо-

тать математические модели рассматриваемого технологического процесса и оценить степень влияния 

различных параметров оборудования (угла поворота, геометрии исполнительных механизмов) и коэф-

фициентов трения текстильных отходов на движение волокна. 
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